Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (6): 401-409    DOI: 10.11901/1005.3093.2016.438
  本期目录 | 过刊浏览 |
用低温加氢裂解法在AFI分子筛孔道中制备单壁碳纳米管的影响因素
杨文申,郎林,阴秀丽(),吴创之
中国科学院广州能源研究所 中国科学院可再生能源重点实验室 广东省新能源和可再生能源研究开发与应用重点实验室 广州 510640
Influencing Factors on Formation of SWCNTs in the Channels of AFI Molecular Sieves by Low-temperature Hydrocracking
Wenshen YANG,Lin LANG,Xiuli YIN(),Chuangzhi WU
Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
引用本文:

杨文申,郎林,阴秀丽,吴创之. 用低温加氢裂解法在AFI分子筛孔道中制备单壁碳纳米管的影响因素[J]. 材料研究学报, 2017, 31(6): 401-409.
Wenshen YANG, Lin LANG, Xiuli YIN, Chuangzhi WU. Influencing Factors on Formation of SWCNTs in the Channels of AFI Molecular Sieves by Low-temperature Hydrocracking[J]. Chinese Journal of Materials Research, 2017, 31(6): 401-409.

全文: PDF(1908 KB)   HTML
摘要: 

用水热合成法制备出多种AFI型(AlPO4-5、CoAPO-5、SAPO-5、CrAPO-5、FeAPO-5及MnAPO-5)分子筛,并系统研究了低温加氢裂解法在其孔道中制备直径为0.4 nm单壁碳纳米管(SWCNTs)的各种影响因素。使用XRD、NH3-TPD及Raman等手段,研究了活性金属种类、活性金属添加量、反应温度和模板剂碳含量对所制备样品中SWCNTs的质量和填充密度的影响。结果表明,Si或活性金属的添加可改变AlPO4-5分子筛的酸催化活性,进而影响低温加氢裂解法制备SWCNTs的质量和填充密度。加氢裂解温度和模板剂碳含量,也是影响SWCNTs制备的关键因素。

关键词 无机非金属材料AFI分子筛单壁碳纳米管IRBM/IG低温加氢裂解    
Abstract

AFI (AlPO4-5, CoAPO-5, SAPO-5, CrAPO-5, FeAPO-5 and MnAPO-5) molecular sieves were synthesized by hydrothermal method, and then single-walled carbon nanotubes (SWCNTs) with a diameter of 0.4 nm were prepared in the channels of these kind molecular sieves by low-temperature hydrocracking. The effect of the type and the amount of active metals, the hydrocracking temperature and the carbon content of template agents was investigated by means of XRD, NH3-TPD and micro-Raman spectroscopy. The results show that the addition of Si or active metal can improve the quantities of acid sites in the AFI molecular sieves, which can improve the density and quality of the SWCNTs in the channels of the hydrocracked AlPO4-5 molecular sieves. Besides, the hydrocracking temperature and the carbon content of template agents are also key influence factors for the preparation of SWCNTs.

Key wordsinorganic non-metalic materials AFI molecular sieves    SWCNTs    IRBM/IG    low-temperature hydrocracking
收稿日期: 2016-07-25     
基金资助:国家自然科学基金(51661145022)和广东省科技计划(2016A010104011)
图1  低温加氢裂解法制备SWCNTs的工艺流程图
No. Gel composition Phase Crystallinity/%
(1) Al2O3: 1.3P2O5: 2.4TEA: 150H2O AlPO4-5 100
(2) Al2O3: 1.3P2O5: 2.4TPA: 150H2O AlPO4-5 109.7
(3) Al2O3: 1.3 P2O5: 0.075SiO2: 2.4TEA: 150H2O SAPO-5 115.9
(4) Al2O3: 1.3 P2O5: 0.075Cr2O3: 2.4TEA: 150H2O CrAPO-5 79.1
(5) Al2O3: 1.3 P2O5: 0.075Mn2O3: 2.4TEA: 150H2O MnAPO-5 77.4
(6) Al2O3: 1.3 P2O5: 0.075CoO: 2.4TEA : 150H2O CoAPO-5 74.6
(7) Al2O3: 1.3P2O5: 0.15CoO: 2.4TEA: 150H2O CoAPO-5 60.6
(8) Al2O3: 1.3 P2O5: 0.2CoO: 2.4TEA: 150H2O CoAPO-5 58.9
(9) Al2O3: 1.3 P2O5: 0.3CoO: 2.4TEA : 150H2O CoAPO-5,CoAPO-34 56.1
(10) Al2O3: 1.3 P2O5: 0.075Fe2O3: 2.4TEA: 150H2O FeAPO-5 75.4
(11) Al2O3: 1.3P2O5: 0.15Fe2O3: 2.4TEA: 150H2O FeAPO-5 61.3
(12) Al2O3: 1.3P2O5: 0.2Fe2O3: 2.4TEA: 150H2O FeAPO-5 57.6
(13) Al2O3: 1.3 P2O5: 0.3 Fe2O3: 2.4TEA: 150H2O FeAPO-5,FeAPO-34 52.2
表1  AFI分子筛的合成液配比和产物分析
图2  分子筛样品的XRD谱图
图3  在350℃加氢裂解处理后分子筛样品中SWCNTs的拉曼谱图
图4  CoAPO4-5(TEA)及FeAPO4-5(TEA)分子筛样品的XRD谱图
图5  在350℃加氢裂解处理后CoAPO4-5(TEA)及FeAPO4-5(TEA)分子筛样品中SWCNTs的拉曼光谱图
Sample IRBM (510 cm-1) IRBM (550 cm-1) IG IRBM/IG
AlPO4-5(TEA) 80.959 / 1000.04 0.081
SAPO-5(TEA) 151.619 / 980.994 0.1545
FeAPO-5(TEA,Fe/Al=0.0375) 165.2357 / 978.439 0.1689
CoAPO-5(TEA,Co/Al=0.0375) 195.4236 / 1120.456 0.1772
MnAPO-5(TEA, Mn/Al=0.0375) 149.896 / 1050.78 0.142
CrAPO-5(TEA, Cr/Al=0.0375) 101.510 / 975.439 0.104
AlPO4-5(TPA) 382.71 420.81 3908.27 0.206
表2  在不同AFI分子筛晶体孔道中制备的SWCNTs拉曼特征峰值(IRBM,IG)和IRBM/IG值
图6  不同Co/Al的CoAlPO-5分子筛的NH3-TPD谱图
图7  在不同温度下AlPO4-5(TEA)和AlPO4-5(TPA)分子筛中制备的SWCNTs拉曼谱图
Sample IRBM (510 cm-1) IRBM (550 cm-1) IG IRBM/IG
CoAPO-5 (TEA,Co/Al=0.0375) 195.4236 / 1120.456 0.1772
CoAPO-5 (TEA,Co/Al=0.075) 194.6231 / 1092.709 0.1781
CoAPO-5 (TEA,Co/Al=0.1) 76.715 / 921.591 0.08324
CoAPO-5 (TEA,Co/Al=0.15) 62.493 / 768.427 0.08132
FeAPO-5(TEA,Fe/Al=0.0375) 165.2357 / 978.439 0.1689
FeAPO-5(TEA,Fe/Al=0.075) 159.371 / 645.2138 0.24
FeAPO-5(TEA,Fe/Al=0.1) 138.983 / 906.7461 0.1532
FeAPO-5(TEA,Fe/Al=0.15) 18.862 / 384.731 0.049
表3  不同Co/Al和Fe/Al的金属杂化AlPO4-5(TEA)分子筛孔道中制备的SWCNTs的拉曼特征峰值(IRBM,IG)及IRBM/IG值
Sample IRBM (510 cm-1) IRBM (550 cm-1) IG IRBM/IG
AlPO4-5(TEA,320℃) 65.437 / 961.38 0.071
AlPO4-5(TEA,350℃) 80.959 / 1000.04 0.081
AlPO4-5(TPA,280℃) / 184.311 2220.61 0.083
AlPO4-5(TPA,300℃) / 261.144 2664.73 0.098
AlPO4-5(TPA,320℃) 439.984 420.709 4627.87 0.186
AlPO4-5(TPA,350℃) 382.71 420.81 3908.27 0.206
表4  不同温度(280,300,320,350及400℃)下在AlPO4-5(TEA)和AlPO4-5(TPA)分子筛孔道中制备的SWCNTs拉曼特征峰值(IRBM,IG)及IRBM/IG值
[1] Iijima S.Growth of carbon nanotubes[J]. Mat. Sci. Eng. B, 1993, 19(1): 172
[2] Awasthi K, Srivastava A, Srivastava O J.Synthesis of carbon nanotubes[J]. J. Nanosci. Nanotechnol., 2005, 10: 1616
[3] Azam M A, Manaf N S A, Taalib E, et al. Aligned carbon nanotube from catalytic vapor deposition technique for energy storage device: a review[J]. Ionics, 2013, 11: 1455
[4] Tan L L, Ong W J, Chai S P, et al.Growth of carbon nanotubes over non-metallic based catalysts: a review on the recent developments[J]. Catal. Today., 2013, 217: 1
[5] Guo T, Nikolaev P, Thess A, et al.Catalytic growth of single-walled nanotubes by laser vaporation[J]. Chem. Phys. Lett., 1995, 243: 49
[6] Ebbesen T W, Ajayan P M.Large-scale synthesis of carbon nanotubes[J]. Nature, 1992, 358: 220
[7] Ivanov V, Nagy J B, Lambin P, et al.The study of carbon nanotubes produced by catalytic method[J]. Chem. Phys. Lett., 1994, 223: 329
[8] Tang Z K, Sun H D, Wang J, et al.Mono-sized single-wall carbon nanotubes formed in the channels of AlPO4-5 single crystals[J]. Appl. Phys. Lett., 1998, 73: 2287
[9] Wang Z, Shi W, Lortz R, et al.Superconductivity in 4-angstrom carbon nanotubes-a short review[J]. Nanoscale, 2012, 4: 21
[10] Zhang T, Sun M Y, Wang Z, Shi W, Sheng P.Crossover from Peierls distortion to one-dimensional superconductivity in arrays of (5, 0) carbon nanotubes[J]. Phys. Rev. B., 2011, 84: 245
[11] Xu R R, Pang W Q.Chemistry-zeolites and Porous Materials[M]. Beijing: Beijing Science Press, 2004
[11] (徐如人, 庞文琴. 分子筛与多孔材料化学 [M]. 北京: 北京科学出版社, 2004)
[12] Zhai J P, Tang Z K, Hu X J, et al.Catalytic growth of 0.4 nm single-walled carbon nanotubes aligned inside porous zeolite crystals[J]. Phys. Stat. Sol (b)., 2006, 243: 3082
[13] Yang W S, Liu X F, Zhang L, et al.In situ synthesis and microstructure manuipulation of SAPO-5 films over Porous α-Al2O3 substrates[J]. Langmuir, 2009, 25(4): 271
[14] Li Z M, Zhai J P, Liu H J, et al.Synthesis of 4 ? single-walled carbon nanotubes in catalytic Si-substituted AlPO4-5 molecular sieves[J]. Appl. Phys. Lett., 2004, 85(7): 1253
[15] Zhai J P, Li Z M, Liu H J, et al.Catalytic effect of metal cations on the formation of carbon nanotubes inside the channels of AlPO4-5 crystal[J]. Carbon, 2006, 44: 1151
[16] Zhai J P, Tang Z K, Li Z M, et al.Carbonization of mechanism of Tetrapropylammonium-hydroxide in channels of AlPO4-5 single crystals[J]. Chem. Mater., 2006, 18: 1505
[17] Chen Q H, Wang Z, Zheng Y, et al.New developments in the growth of 4 Angstrom carbon nanotubes in linear channels of zeolite template[J]. Carbon, 2014, 76: 401
[18] Li G D, Tang Z K, Wang N, et al.Structural study of the 0.4 nm single-wall carbon nanotubes aligned in channels of AlPO4-5 crystal[J].Carbon, 2002, 40: 917
[19] Yang W S, Sun W N, Zhao S H, et al.Single-walled carbon nanotubes prepared in small AlPO4-5 and CoAPO-5 molecular sieves by low-temperature hydrocracking[J]. Micropor. Mesopor. Mat., 2016, 219: 87
[20] Fan W B, Li R F, Dou T, et al.Solvent effects in the synthesis of CoAPO-5, -11 and -34 molecular sieves[J]. Micropor. Mesopor. Mat., 2005, 84: 116
[21] Hochtl M, Jentys A, Vinek H.Acidity of SAPO and CoAPO molecular sieves and their activity in the hydroisomerization of n-heptane[J]. Micropor. Mesopor. Mat., 1999, 31(3): 271
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.