Please wait a minute...
材料研究学报  2016, Vol. 30 Issue (10): 795-800    DOI: 10.11901/1005.3093.2015.667
  研究论文 本期目录 | 过刊浏览 |
碳纳米管阵列的原子氧剥蚀效应*
刘宇明(),李蔓,刘向鹏
北京卫星环境工程研究所 北京 100094
Erosion of Carbon Nanotube Arrays Induced by Atomic Oxygen Irradiation
Yuming LIU(),Man LI,Xiangpeng LIU
Beijing Institute of Spacecraft Environment Engineering, Beijing 100094, China
引用本文:

刘宇明,李蔓,刘向鹏. 碳纳米管阵列的原子氧剥蚀效应*[J]. 材料研究学报, 2016, 30(10): 795-800.
Yuming LIU, Man LI, Xiangpeng LIU. Erosion of Carbon Nanotube Arrays Induced by Atomic Oxygen Irradiation[J]. Chinese Journal of Materials Research, 2016, 30(10): 795-800.

全文: PDF(0 KB)   HTML
摘要: 

利用空间原子氧地面模拟试验研究了碳纳米管阵列的原子氧剥蚀效应。用扫描电子显微镜观察碳纳米管阵列经不同注量原子氧辐照后的形貌, 并测量了剥蚀长度。结果表明, 碳纳米管阵列在原子氧作用下发生剥蚀效应, 原子氧注量不同则剥蚀率有一定的差异, 其形貌也有明显的变化。原子氧的轰击和氧化是碳纳米管阵列发生原子氧剥蚀的原因。基于这些结果提出了原子氧剥蚀碳纳米管阵列过程模型。

关键词 无机非金属材料碳纳米管阵列原子氧剥蚀效应剥蚀率    
Abstract

The atomic oxygen (AO) irradiation induced erosion of carbon nanotube (CNT) arrays has been investigated by ground-based atomic oxygen simulation facility. The heights and the surface morphologies of CNT arrays before and after AO irradiation have been characterized by scanning electron microscope (SEM). The results show that CNT arrays can be etched away in AO environment, but the erosion rate of CNT arrays varied with the radiation flux of AO. The morphologies of CNT arrays are also quite different from those before AO irradiation. The erosion of CNT arrays can be attributed to the bombardment effect and the oxidation effect of AO. Finally, a model for describing the process of AO erosion of CNT arrays is proposed.

Key wordsinorganic non-metallic materials    carbon nanotube arrays    atomic oxygen    erosion effect    erosion yield
收稿日期: 2015-11-22     
基金资助:* 总装备部装备预先研究基金资助
图1  碳纳米管阵列原子氧试验示意图
图2  碳纳米管阵列原样SEM像
图3  0.5×1020atom/cm2原子氧辐照后碳纳米管SEM像
图4  1.5×1020atom/cm2原子氧辐照后碳纳米管的SEM像
图5  5.0×1020atom/cm2原子氧辐照后碳纳米管的SEM像
Sample Height of CNT arrays (μm) Ey
(cm3/atom)
As-grown 400 -
After AO irradiation with fluence of 0.5×1020atom/cm2 360 8×10-23
After AO irradiation with fluence of 1.5×1020atom/cm2 140 17×10-23
After AO irradiation with fluence of 5×1020atom/cm2 100 6×10-23
表1  碳纳米管阵列剥蚀率
图6  碳纳米管阵列的原子氧剥蚀过程模型
图7  在原子氧辐照过程中碳纳米管表面出现的漏斗形形貌
1 O. Gohardani, M. C. Elola, C. Elizetxea, Potential and prospective implementation of carbon nanotubes on next generation aircraft and space vehicles: A review of current and expected applications in aerospace sciences, Progress in Aerospace Sciences, 70, 42(2014)
2 M. B. Jakubinek, B. Ashrafi, Y. Zhang, Y. M. Rubi, C. T. Kingston, A. Johnston, B. Simard, Single-walled carbon nanotube-epoxy composites for structural and conductive aerospace adhesives, Composites: Part B, 69, 87(2015)
3 DUO Shuwang, LI Meishuan, ZHANG Yaming, ZHOU Yanchun, Mass change and erosion mechanism of the polyimide ?lm during atomic oxygen exposure, Chinese Journal of Materials Research, 19(4), 337(2005)
3 (多树旺, 李美栓, 张亚明, 周延春, 原子氧环境中聚酰亚胺的质量变化和侵蚀机制, 材料研究学报, 19(4), 337(2005))
4 YANG Guang, HUANG Pengcheng, Atomic oxygen erosion resistance mechanism of a kind of UV-cured blended resins, Chinese Journal of Materials Research, 22(3), 251(2008)
4 (杨光, 黄鹏程, 一种光聚合共混树脂抗原子氧侵蚀的机理, 材料研究学报, 22(3), 251(2008))
5 S. B. Jin, G. S. Son, Y. H. Kim, C. G. Kim, Enhanced durability of silanized multi-walled carbon nanotube/epoxy nanocomposites under simulated low earth orbit space environment, Composites Science and Technology, 87, 224(2013)
6 D. Micheli, C. Apollo, R. Pastore, R. B. Morles, P. Coluzzi, M. Marchetti, Temperature, atomic oxygen and outgassing effects on dielectric parameters and electrical properties of nanostructured composite carbon-based materials, Acta Astronautica, 76, 127(2012)
7 W. Zhang, M. Yi, Z. G. Shen, X. H. Zhao, X. J. Zhang, S. L. Ma, Graphene-reinforced epoxy resin with enhanced atomic oxygen erosion resistance, Journal of Materials Science, 48, 2416(2013)
8 H. E. Misak, V. Sabelkin, S. Mall, P. E. Kladitis, Thermal fatigue and hypothermal atomic oxygen exposure behavior of carbon nanotube wire, Carbon, 57, 42(2013)
9 LIU Xiangpeng, TONG Jingyu, LI Jinhong, Study on the degradation of spacecraft film material due to AO interaction, Spacecraft Environment Engineering, 3(1), 39(2006)
9 (刘向鹏, 童靖宇, 李金洪, 航天器薄膜材料在原子氧环境中退化研究, 航天器环境工程, 3(1), 39(2006))
10 E. N. Voronina, L. S. Novikov, V. N. Chernik, N. P. Chirskaya, K. B. Vernigorov, G. G. Bondarenko, A. I. Gaidar, Mathematical and experimental simulation of impact of atomic oxygen of the earth’s upper atmosphere on nanostructures and polymer composites, Inorganic Materials: Applied Research, 3(2), 95(2012)
11 W. H. Wang, B. C. Huang, L. S. Wang, D. Q. Ye, Oxidative treatment of multi-wall carbon nanotubes with oxygen dielectric barrier discharge plasma, Surface and Coatings Technology, 205, 4896(2011)
12 Y. M. Liu, L. Liu, P. Liu, S. S. Fan, Plasma etching carbon nanotube arrays and the field emission properties, Diamond and Related Materials, 13, 1609(2004)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.