Please wait a minute...
材料研究学报  2016, Vol. 30 Issue (9): 717-720    DOI: 10.11901/1005.3093.2015.461
  研究论文 本期目录 | 过刊浏览 |
HCl浓度对多孔硅微结构及Si-H键合的影响*
安红章1,吴开均1,肖婷2,展长勇2,任丁1,2
1. 保密通信重点实验室 成都 610041
2. 辐射物理及技术教育部重点实验室 四川大学原子核科学技术研究所 成都 610064
Effect of the Concentration of Hydrochloric Acid on the Microstructure and Si-H Bonds in Porous Silicon
Hongzhang AN1,Kaijun WU1,Ting XIAO2,Changyong ZHAN2,Ding REN1,2,*
1. Science and Technology on Communication Security Laboratory, Chengdu 610041, China
2. Key Laboratory of Radiation and Technology of Education Ministry of China, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
引用本文:

安红章,吴开均,肖婷,展长勇,任丁. HCl浓度对多孔硅微结构及Si-H键合的影响*[J]. 材料研究学报, 2016, 30(9): 717-720.
Hongzhang AN, Kaijun WU, Ting XIAO, Changyong ZHAN, Ding REN. Effect of the Concentration of Hydrochloric Acid on the Microstructure and Si-H Bonds in Porous Silicon[J]. Chinese Journal of Materials Research, 2016, 30(9): 717-720.

全文: PDF(3227 KB)   HTML
摘要: 

采用电化学湿法刻蚀制备了P型多孔硅, 通过改变HCl溶液浓度来调整刻蚀液中的氢离子浓度。制备出的多孔硅孔径相同, 孔深随着氢离子浓度的提高呈线性增大直至恒定。基于电流突发模型阐述了结构参数的变化: 孔径的形成开始于刻蚀的初始阶段, 空穴主导了初始阶段的腐蚀, 空穴的迁移与消耗过程就是孔径扩张和孔壁形成的过程, 该过程与硅片本身的性能密切相关, 与氢离子浓度无关, 故孔径基本恒定; 氢离子浓度的提高加快氢的置换反应直至平衡, 从而使反应总速率提高直至恒定, 因此孔深先线性增大然后保持恒定; Si-H含量在一定范围内与孔深的变化吻合呈现上升趋势, 且键合形式以Si-H2为主。

关键词 无机非金属材料HCl多孔硅微结构Si-H电流突发模型    
Abstract

In order to increase hydrogen ion concentration, hydrochloric acid was added in the etching liquid for the preparation of porous silicon used by electrochemical wet etching. The diameters of pores were constant and the depth linearly increased into constant with the concentration of hydrogen ions. The changes of the diameter and depth of pores were discussed on the basis of current burst model. The apertures formed in the initial stage of etching. In this stage the holes dominated the silicon corrosion, and the transport and consumption of the holes led to the aperture expansion and the formation of pore walls. The characters of holes were decided by silicon substrates and were not related to the concentration of hydrogen ions, so the apertures were constant. The increase of hydrogen ion concentration led to the acceleration until constant on the reaction rate of hydrogen displacement, so the system reaction rate was accelerated to a constant until it was limited by other reaction. The curve of pore depth - hydrochloric acid concentration remained constant after a linear increasing. Si-H contents increased with the pore depth in the certain range. Si-H2 bonds dominated in the bonding type of Si-Hx (x=1, 2, 3).

Key wordsinorganic non-metallic materials    HCl    porous silicon    microstructure    Si-H bond    current burst mode
收稿日期: 2015-08-17     
基金资助:* 国家自然科学基金青年科学基金11005076、11305029, 中国电子科技集团公司第三十研究所协作项目
图1  使用含0-3 mmol/mL HCl溶液的刻蚀液制备的多孔硅剖面图
图2  HCl浓度对多孔硅孔径及孔深的影响
图3  与Si-Hx伸缩振动模式对应的红外吸收光谱
图4  Si-Hx(x=1, 2, 3)强度积分与HCl浓度的关系
[1] L. T. Canham, Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers, Applied Physics Letters, 57(10), 1046(1990)
[2] Vladimir Lysenko, Fabrice Bidault, Sergei Alekseev, Vladimir Zaitsev, Daniel Barbier, Christophe Turpin, Francesco Geobaldo, Paola Rivolo, Edoardo Garrone, Study of Porous Silicon Nanostructures as Hydrogen Reservoirs, Journal of Physical Chemistry B, 109, 19711(2005)
[3] Changyong Zhan, Paul K. Chu, Ding Ren, Yunchang Xin, Kaifu Huo, Yu Zou, N.K. Huang, Release of hydrogen during transformation from porous silicon to silicon oxide at normal temperature, International Journal of Hydrogen Energy, 36, 4513(2011)
[4] Brian Lillis, Cornelia Jungk, Daniela Iacopino, Andrew Whelton, Eileen Hurley, Michelle M. Sheehan, Alexandra Splinter, Aidan Quinn, Gareth Redmond, William A. Lanec, Alan Mathewson, Helen Berney, Microporous silicon and biosensor development: structural analysis, electrical characterisation and biocapacity evaluation, Biosensors and Bioelectronics, 21, 282(2005)
[5] Jillian M.Buriak, High surface area silicon materials: fundamentals and new technology, Philosophical Transactions of the Royal Society A, 364, 217(2006)
[6] H. F?ll, M. Christophersen, J. Carstensen, G. Hasse, Formation and application of porous silicon, Materials Science and Engineering R, 39, 93(2002)
[7] K. Kobayashi, F. A. Harraz, S. Izuo, T. Sakka, Y. H. Ogata, Macropore growth in a prepatterned p-type silicon wafer, Physica Status Solidi A, 204(5) 5, 1321(2007)
[8] V. Lysenko, J. Vitiello, B. Remaki, D. Barbier, V. Skryshevsky, Nanoscale morphology dependent hydrogen coverage of meso-porous silicon, Applied Surface Science, 230, 425(2004)
[9] V. Lysenko, S. Alekseev, J. Botsoa1, D. Barbier, Incorporation of hydrogen in porous silicon nanocrystallites, Physica Status Solidi A, 204(5), 1307(2007)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.