Please wait a minute...
材料研究学报  2016, Vol. 30 Issue (9): 675-680    DOI: 10.11901/1005.3093.2016.092
  研究论文 本期目录 | 过刊浏览 |
溶胶-凝胶法制备Bi4Ti3O12/SiO2及其光催化性能*
王宏,毕菲非,杨丽丽,张文杰
沈阳理工大学环境与化学工程学院 沈阳 110159
Sol-gel Synthesis of Bi4Ti3O12/SiO2 and Its Photocatalytic Activity
Hong WANG,Feifei BI,Lili YANG,Wenjie ZHANG
School of Environmental and Chemical Engineering, Shenyang Ligong University, Shenyang 110159, China
引用本文:

王宏,毕菲非,杨丽丽,张文杰. 溶胶-凝胶法制备Bi4Ti3O12/SiO2及其光催化性能*[J]. 材料研究学报, 2016, 30(9): 675-680.
Hong WANG, Feifei BI, Lili YANG, Wenjie ZHANG. Sol-gel Synthesis of Bi4Ti3O12/SiO2 and Its Photocatalytic Activity[J]. Chinese Journal of Materials Research, 2016, 30(9): 675-680.

全文: PDF(1922 KB)   HTML
摘要: 

采用溶胶-凝胶法制备石英砂负载Bi4Ti3O12/SiO2光催化材料, 研究负载对Bi4Ti3O12的物理性质和光催化活性的影响。结果表明, 负载后的层状钙钛矿结构Bi4Ti3O12包覆在非晶态石英砂球体表面, Bi4Ti3O12中各元素的电子结合能没有发生改变。活性艳红X-3B在纯Bi4Ti3O12和不同负载量xBi4Ti3O12/SiO2上的吸附率不超过3%。负载后Bi4Ti3O12的光催化活性均有提高, 其中质量分数为50%负载量的Bi4Ti3O12/SiO2具有最高的活性。在Bi4Ti3O12和质量分数为50%负载量的Bi4Ti3O12/SiO2上的光催化反应速率常数分别为0.021 s-1和0.027 s-1

关键词 无机非金属材料钛酸铋活性艳红X-3B光催化石英砂    
Abstract

Bi4Ti3O12/SiO2 photocatalytic material coated quartz sand was prepared by sol-gel method. The effect of deposition process on physical property and photocatalytic activity of the deposited Bi4Ti3O12 were studied. The deposited Bi4Ti3O12 shows a layered perovskite structure on the surface of the amorphous quartz sand. Whlie the deposition process does not alter the electron binding energies of the deposited Bi4Ti3O12. The adsorption of reactive brilliant red X-3B on pure Bi4Ti3O12 and xBi4Ti3O12/SiO2 with different deposited among χ is not more than 3%. Photocatalytic activity of the deposited Bi4Ti3O12 is enhanced, among others the Bi4Ti3O12/SiO2 with 50 mass% Bi4Ti3O12 has the maximum activity. The rate constants of photocatalytic reactions for Bi4Ti3O12 and 50%Bi4Ti3O12/SiO2 are 0.021 s-1 and 0.027 s-1 respectively.

Key wordsinorganic non-metallic materials    bismuth titanate    reactive brilliant red X-3B    photocatalytic    quartz sand
收稿日期: 2016-02-07     
基金资助:* 国家自然科学基金青年基金51504154, 辽宁省自然科学基金2015020186和辽宁省废水治理技术重点实验室开放基金4771004kfs资助项目
图1  石英砂和xBi4Ti3O12/SiO2的SEM图
图2  50%Bi4Ti3O12/SiO2的TEM形貌图片
图3  Bi4Ti3O12和xBi4Ti3O12/SiO2的XRD图谱
图4  Bi4Ti3O12和50%Bi4Ti3O12/SiO2的XPS全扫描谱图
图5  Bi4Ti3O12 and 50%Bi4Ti3O12/SiO2的XPS Bi4f, Ti2p和O1s谱图
图6  负载量对xBi4Ti3O12/SiO2吸附和光催化降解活性艳红X-3B的影响(光催化反应时间为30 min)
图7  Bi4Ti3O12和50%Bi4Ti3O12/SiO2经不同光照时间对活性艳红X-3B的降解
[1] G. Plantard, T. Janin, V. Goetz, S. Brosillon, Solar photocatalysis treatment of phytosanitary refuses: Efficiency of industrial photocatalysts, Appl. Catal. B Environ., 115, 38(2012)
[2] X. X. Li, S. M. Fang, L. Ge, C. C. Han, P. Qiu, W. L. Liu, Synthesis of flower-like Ag/AgCl-Bi2MoO6 plasmonic photocatalysts with enhanced visible-light photocatalytic performance, Appl. Catal. B: Environ., 176, 62(2015)
[3] S. Kamimura, N. Murakami, T. Tsubota, T. Ohno, Fabrication and characterization of a p-type Cu3Nb2O8 photocathode toward photoelectrochemical reduction of carbon dioxide, Appl. Catal. B: Environ., 174, 471(2015)
[4] E. García-López, G. Marcì, B. Megna, F. Parisi, M. Boaro, L. Palmisano, SrTiO3-based perovskites: Preparation, characterization and photocatalytic activity in gas-solid regime under simulated solar irradiation, J. Catal., 321, 13(2015)
[5] W. J. Zhang, Y. Li, F. H. Wang, Properties of TiO2 thin films prepared by magnetron sputtering, J. Mater. Sci. Technol., 18, 101(2002)
[6] O. Merka, D. W. Bahnemann, M. Wark, Photocatalytic hydrogen production with non-stoichiometric pyrochlore bismuth titanate, Catal. Today, 225, 102(2014)
[7] J. Hou, S. Jiao, H. Zhu, Bismuth titanate pyrochlore microspheres: Directed synthesis and their visible light photocatalytic activity, J. Solid State Chem., 184, 154(2011)
[8] M. Mahalakshmi, S. V. Priya, B. Arabindoo, M. Palanichamy, V. Murugesan, Photocatalytic degradation of aqueous propoxur solution using TiO2 and Hβ zeolite-supported TiO2, J. Hazard. Mater., 161, 336(2009)
[9] K. Yamaguchi, K. Inumaru, Y. Oumi, T. Sano, S. Yamanaka, Photocatalytic decomposition of 2-propanol in air by mechanical mixtures of TiO2 crystalline particles and silicalite adsorbent: The complete conversion of organic molecules strongly adsorbed within zeolitic channels, Micropor. Mesopor. Mater., 117, 350(2009)
[10] W. J. Zhang, X. B. Pei, J. W. Bai, H.B. He, Calcination conditions on the properties of porous TiO2 film, J. Mater. Eng. Perform., 23, 1049(2014)
[11] L. Pinho, M. J. Mosquera, Photocatalytic activity of TiO2-SiO2 nanocomposites applied to buildings:Influence of particle size and loading, Appl. Catal. B: Environ., 134, 205(2013)
[12] M. Bellardita, M. Addamo, A. D. Paola, Photocatalytic activity of TiO2/SiO2 systems, J. Hazard. Mater., 174, 707(2010)
[13] HE Weiming, ZHEN Qiang, PAN Qingyi, LIU Jianqiang, Study on preparating process of nanometer Bi2O3-Y2O3 fast ionic conductor, J. Func. Mater., 35, 727(2004)
[13] (何伟明, 甄强, 潘庆谊, 刘建强, Bi2O3-Y2O3 体系中纳米δ-Bi2O3相的生成规律研究, 功能材料, 35, 727(2004))
[14] XU Guocheng, PAN Ling, GUAN Qingfeng, ZOU Guangtian, Crystallization of amorphous bismuth titanate, Acta Physica Sinica, 55, 3080(2006)
[14] (徐国成, 潘玲, 关庆丰, 邹广田, 非晶钛酸铋的晶化过程, 物理学报, 55, 3080(2006))
[15] C. K. Lee, S. S. Liu, L. C. Juang, Application of titanate nanotubes for dyes adsorptive removal from aqueous solution, J. Hazard. Mater., 148, 756(2007)
[16] CHEN Hesheng, SUN Zhenya, SHAO Jingchang, Investigation on FT-IR spectroscopy for eight different sources of SiO2, Bulletin of the Chinese Ceramic Society, 30, 934(2011)
[16] (陈和生, 孙振亚, 邵景昌, 八种不同来源二氧化硅的红外光谱特征研究, 硅酸盐通报, 30, 934(2011))
[17] R. A. Golda, A. Marikani, D. P. Padiyan, Mechanical synthesis and characterization of Bi4Ti3O12 nanopowders, Ceramics Int., 37, 3731(2011)
[18] M. G. A.Ranieri, E. C. Aguiar, M. Cilense, Syntheses of bismuth titanate templates obtained by the molten salt method, Ceramics Int., 39, 7291(2013)
[19] Z. Hu, H. Gu, Y. Hu, Microstructural, Raman and XPS properties of single-crystalline Bi3.15Nd0.85Ti3O12 nanorods, Mater. Chem. Phys., 113, 42(2009)
[20] L. Wang, W. Ma, Y. Fang, Bi4Ti3O12 synthesized by high temperature solid phase method and it's visible catalytic activity, Procedia Environ. Sci., 18, 547(2013)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.