Please wait a minute...
材料研究学报  2016, Vol. 30 Issue (8): 561-567    DOI: 10.11901/1005.3093.2015.640
  本期目录 | 过刊浏览 |
G18CrMo2-6钢在高温回火过程中第二相的演变
李振江, 郑雷刚
中国科学院金属研究所 沈阳材料科学国家(联合)实验室 沈阳 110016
Evolution of Secondary Phase in G18CrMo2-6 Steel during High Temperature Tempering
LI Zhenjiang*, ZHENG Leigang
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

李振江, 郑雷刚. G18CrMo2-6钢在高温回火过程中第二相的演变[J]. 材料研究学报, 2016, 30(8): 561-567.
Zhenjiang LI, Leigang ZHENG. Evolution of Secondary Phase in G18CrMo2-6 Steel during High Temperature Tempering[J]. Chinese Journal of Materials Research, 2016, 30(8): 561-567.

全文: PDF(8639 KB)   HTML
摘要: 

应用扫描电子显微镜、透射电子显微镜和能谱技术等手段研究了G18CrMo2-6钢正火组织中第二相在680℃下保温一系列时间段的转变。结果表明, 在正火后贝氏体中析出相主要为马氏体/奥氏体(M/A)组元和合金渗碳体(M3C); 在回火保温初期M/A分解为铁素体(α)与M3C组织, 随着保温时间延长M3C逐渐球化并溶解, M23C6在晶界析出并长大, 同时基体上有细小弥散的MC相析出。即回火保温过程中组织随时间的延长发生M/A→α+M3C, M3C→M23C6+MC的变化。

关键词 金属材料G18CrMo2-6钢第二相回火演变    
Abstract

The evolution of the secondary phase in G18CrMo2-6 heat-resistant steel induced by tempering at 680℃ for a series of durations was investigated by optical microscope (OM), scanning electron microscope (SEM), transmission electron microscope (TEM) and energy dispersive X-ray detector (EDX). It demonstrates that martensite/austenite (M/A) particles and M3C precipitate on bainite matrix after normalizing. During the tempering, decomposition of M/A particles into the M3C carbides in bainite matrix can be found. The increasing of tempering time results in the precipitation of MC, the spheroidization and refinement of M3C carbide as well as the precipitation and coarsening of M23C6 carbide at the grain boundaries.

Key wordsmetallic materials    G18CrMo2-6 steel    second phase    tempering    evolution
收稿日期: 2015-11-11     
作者简介: 本文联系人: 李振江
Material C% Mn% Si% Cr% Mo% Ni%
Standard 0.15-0.2 0.5-0.9 0.2-0.6 0.4-0.65 0.45-0.7 0.3-0.5
G18CrMo2-6 0.16 0.75 0.45 0.61 0.61 0.46
表1  标准中G18CrMo2-6钢及实验用G18CrMo2-6钢的化学成分
图1  G18CrMo2-6钢940℃×2 h正火后的微观组织
图2  G18CrMo2-6 钢正火后的微观组织
图3  在680℃保温不同时间的金相组织
图4  M/A组元随着保温时间的变化
图5  G18CrMo2-6 钢经过不同回火时间后贝氏体区的微观组织
图6  G18CrMo2-6钢经过不同回火时间后晶界的微观组织
图7  G18CrMo2-6钢的大块状第二相TEM像及衍射斑点分析
图8  G18CrMo2-6 钢回火组织的TEM像及碳化物衍射斑点分析
图9  G18CrMo2-6 钢回火后晶界析出相的 TEM像及衍射斑点分析
1 LI Yunlai, ZHANG Hanqian, PENG Bicao, LI Jinfu, Development and recent research of nuclear reactor pressure vessel steels, Pressure Vessel Technology, 27(5), 36(2010)
1 (李云良, 张汉谦, 彭碧草, 李金富, 核电压力容器用钢的发展及研究现状, 压力容器, 27(5), 36(2010))
doi: 10.3969/j.issn.1001-4837.2010.05.008
2 Y-R Im, Y Jun Oh, B-J Lee, J Hwa Hong, H-C Lee, Effects of carbide precipitation on the strength and charpy impact properties of low carbon Mn-Ni-Mo bainitic steels, Journal of Nuclear Materials, 297(2), 138(2001)
doi: 10.1016/S0022-3115(01)00610-9
3 Tezuka H, Sakurai T, Microstructural investigations of long-term ex-service Cr-Mo steel pipe elbows, International Journal of Pressure Vessels and Piping, 82(3), 165(2005)
doi: 10.1016/j.ijpvp.2004.09.001
4 Výrostková A, Kroupa A, Janovec J, Svoboda M, Carbide reactions and phase equilibria in low alloy Cr-Mo-V steels tempered at 773-993 K, Part I: Experimental Measurements, Acta Materialia, 46(1), 31(1998)
doi: 10.1016/S1359-6454(97)00238-3
5 Kroupa A, Výrostková A, Svoboda M, Janovec J, Carbide reactions and phase equilibria in low-alloy Cr-Mo-V steels tempered at 773-993 K, Part II: Theoretical Calculations, Acta Materialia, 46(1), 39(1998)
doi: 10.1016/S1359-6454(97)00238-3
6 Kozeschnik E, Svoboda J, Fratzl P, Fischer F.D, Modelling of kinetics in multi-component multi-phase systems with spherical precipitates, Materials Science and Engineering: A, 385(1-2), 157(2004)
doi: 10.1016/j.msea.2004.06.018
7 Shen D D, Song S H, Yuan Z X, Weng L Q, Effect of solute grain boundary segregation and hardness on the ductile-to-brittle transition for a Cr-Mo low-alloy steel, Materials Science and Engineering: A, 394(1-2), 53(2005)
doi: 10.1016/j.msea.2004.10.036
8 Mann S, Muddle B, Characterization of the ξ- carbide in ex-service 1Cr-0.5Mo steels, Micron, 25(6), 499(1994)
doi: 10.1016/0968-4328(94)90011-6
9 Hou T, Wu K, Alloy carbide precipitation in tempered 2.25Cr-1Mo steelunder high magnetic field, Acta Materialia, 61(6), 2016(2013)
doi: 10.1016/j.actamat.2012.12.021
10 Yang H, Kim S, A study on the mechanical strength change of 2.25Cr-1Mo steel by thermal aging, Materials Science and Engineering: A, 319(23), 316(2001)
doi: 10.1016/S0921-5093(01)01008-5
11 Fujita N, Bhadeshia H,Modelling simultaneous alloy carbide sequence in power plant steels, ISIJ international., 4(7), 760(2002)
doi: 10.2355/isijinternational.42.760
12 Tao Peng, Zhang Chi, Yang Zhigang, Hiroyuki T, Evolution and coarsening of carbides in 2.25Cr-1Mo steel weld metal during high temperature tempering, Journal of Iron and Steel Research International, 17(5), 74(2010)
13 TAO Peng, ZHANG Chi, YANG Zhigang, Evolution of second phase in 225Cr-1Mo-0.25V steel weld metal during high temperature tempering, Acta Metallurgica Sinica, 45(1), 51(2009)
13 (陶鹏, 张弛, 杨志刚, 2.25Cr-1Mo-0.25V钢焊缝中第二相高温回火转变, 金属学报, 45(1), 51(2009))
14 Zhenjiang Li, Namin Xiao, Dianzhong Li, Junyong Zhang, Yongjian Luo, Ruixue Zhang, Effect of microstructure evolution on strength and impact toughness of G18CrMo2-6 heat-resistant steel during tempering, Materials Science and Engineering: A, 604(16), 103(2014)
doi: 10.1016/j.msea.2014.03.013
15 Shtansky D, Inden G, Phase transformation in Fe-Mo-C and Fe-W-C steels-I, the structural evolution during tempering at 700℃, Acta Materialia., 45(7), 2861(1997)
doi: 10.1016/S1359-6454(96)00375-8
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.