Please wait a minute...
材料研究学报  2016, Vol. 30 Issue (8): 568-574    DOI: 10.11901/1005.3093.2015.749
  本期目录 | 过刊浏览 |
骨支架3D打印成型粘结机理的分子动力学研究*
柴卫红1,2, 汪焰恩1, 魏庆华1, 杨明明1,2, 李欣培1, 魏生民1,2
1. 西北工业大学机电学院 西安 710072
2. 西北工业大学 现代设计与集成制造技术教育部重点实验室 西安 710072
Molecular Dynamics Study on Bonding Mechanism of 3D Printing of Bone Scaffolds
CHAI Weihong1,2, WANG Yan'en1,**, WEI Qinghua1, YANG Mingming1,2, LI Xinpei1, WEI Shengmin1,2
1. Mechatronics School, Northwestern Polytechnical University, Xi’an 710072, China
2. The Key Laboratory of Contemporary Design and Integrated Manufacturing Technology, Ministry of Education, Northwestern Polytechnical University, Xi’an 710072, China
引用本文:

柴卫红, 汪焰恩, 魏庆华, 杨明明, 李欣培, 魏生民. 骨支架3D打印成型粘结机理的分子动力学研究*[J]. 材料研究学报, 2016, 30(8): 568-574.
Weihong CHAI, Yan'en WANG, Qinghua WEI, Mingming YANG, Xinpei LI, Shengmin WEI. Molecular Dynamics Study on Bonding Mechanism of 3D Printing of Bone Scaffolds[J]. Chinese Journal of Materials Research, 2016, 30(8): 568-574.

全文: PDF(2287 KB)   HTML
摘要: 

为了从微观分子相互作用层面研究三维打印骨支架工艺中的粉末粘结机理及本质, 本文采用分子动力学的模拟仿真方法, 分别从内聚能密度结合能、对关联函数、力学性能等方面对目前应用较多的PVP、PAM、PVA三种粘结剂的性能进行了研究, 并将所得结果进行了分析和比较。仿真结果表明, 三种粘结剂与HA相互作用模型的界面结合能的大小关系与粘结剂本身的内聚能密度大小关系一致, 即PAM > PVA > PVP; 粘结剂高分子与羟基磷灰石(Hydroxyapatite, HA)的对关联函数分析表明, 粘结剂与HA发生相互作用主要是通过高聚物中的极性官能基团与HA中的Ca原子、羟基发生作用形成离子键、氢键, 且离子键作用强度较大; 此外, 三种相互作用模型各个方向的力学性能较单一HA有所降低, 且相互作用模型力学性能的优劣关系为PVA/HA > PAM/HA > PVP/HA, 这一结论与结合能的大小关系并不完全一致, 这说明相互作用模型的力学性能与粘结剂的粘性并不存在特定的内在关系。

关键词 无机非金属材料羟基磷灰石分子动力学粘结机理力学性能    
Abstract

In order to understand the bonding mechanism of hydroxyapatite (HA) particles for the 3D printedbone scaffolds with binders, the performance of three commercial binders i.e.PVP, PAM andPVAwas studied by means of molecular dynamics simulationin terms of cohesive energy density, binding energy and pair correlation function g(r), as well as mechanical properties. The results revealed that the relationship of the binding energies between the HA surface with the three binders is consistent with their cohesive energy densities, i.e. PAM > PVA > PVP. The analysis of g(r) indicated that the interfacial interactionof HA and binders could mainly be attributed to the ionic bonds and hydrogen bonds which formed between the polar atoms, functional groups in binder polymer and the Ca, -OH in HA, and the strength of ionic bonds is larger. TheYoung's modulus for the three interaction types of binders/HA can be ranked as the following sequence: PVA/HA > PAM/HA >PVP/HA, which are all inferior to that of the single HA. This conclusion is not completely consistent with the ranking of the relevant binding energies, which means that there is no specific intrinsic relation between the mechanical properties of the three binding types and the related viscidity of binders.

Key wordsinorganic non-metallic materials    hydroxyapatite    molecular dynamics    bonding mechanism    mechanical properities
收稿日期: 2015-12-21     
基金资助:* 国家自然科学基金51175432, 教育部高校博士点专项科研基金20116102110046, 中央高校基础研究基金资助项目3102014JCS05007和陕西省工业科技攻关项目2015GY047
作者简介: 本文联系人: 汪焰恩
System Number of repeat units Number of chains Number of atoms Initial density/g×cm-3 Finial density /g×cm-3
PVP 20 2 684 0.6 1.201
PAM 31 2 624 0.6 1.316
PVA 50 2 704 0.6 1.265
表1  聚合物无定型晶胞的详细参数
图1  三种粘结剂与HA界面相互作用模型的平衡结构
图2  内聚能密度随聚合度的变化
System Etotal Eploymer EHA Ebind
PVP/HA 398067331 36773 39917761 147803
PAM/HA 39706547 58660 39917652 269765
PVA/HA 39744011 49373 39917778 223140
表2  高聚物与HA(110)界面相互作用体系的结合能
图3  主链C原子与HA界面的对关联函数
图4  粘结剂/HA界面相互作用的对关联函数
图5  相互作用模型的杨氏模量柱状图
1 DU Chang, WANG Yingjun, Progress in the biomineralization Study of bone and enamel and biomimetic synthesis of Calcium phosphate, Journal of Inorganic Materials, 24(5), 882(2009)
1 (杜昶, 王迎军, 骨与牙釉质组织的生物矿化及磷酸钙材料仿生合成研究进展, 无机材料学报, 24(5), 882(2009))
doi: 10.3724/SP.j.1077.2009.00882
2 Shankar R, Singh D, Shaikh S, Singh G, Yadav A, Jain R, Bone regeneration in osseous defects using hydroxyapatite graft and the extent of ossification in osseous defects treated without graft: a comparative evaluation, Oral. Surg., 10(2), 123(2011)
doi: 10.1007/s12663-011-0189-x pmid: 22654362
3 Saravanan S, Nethala S, Pattnaik S, Tripathi A, Moorthi A, Selvamuruqan N, Preparation, characterization and antimicrobial activity of a bio-comosite scaffold containing chitosan/nano-hydroxyapatite/nano-silver for bone tissue engineering, Int. J. Biol. Macromol., 49(2), 188(2011)
doi: 10.1016/j.ijbiomac.2011.04.010 pmid: 21549747
4 Chesnutt B M, Yuan Y L, Buddington K, Haqqard W O, Bumqardner J D, Composite chitosan/ nano-hydroxypatite scaffolds induce osteocalcin production by osteoblasts in vitro and support bone formation in vivo, Tissue Eng. A, 15(9), 2571(2009)
doi: 10.1089/ten.tea.2008.0054 pmid: 19309240
5 Chiu C K, Ferreira J, Luo T J, Geng H, Lin F C, Ko C C, Direct scaffolding of biomimetic hydroxyapatite-gelatin nanocomposites using aminosilane cross-linker for bone regeneration, J. Mater. Sci. Mater. Med., 23(9), 2115(2012)
doi: 10.1007/s10856-012-4691-6 pmid: 22669282
6 Sachs E, Cima M, Cornie J, Three dimensional printing: Rapid tooling and prototypes directly from a CAD model, Journal of Engineering for Industry, 114(4), 481(1992)
7 ZHAO Huoping, FAN Zitian, YE Chunsheng, Review of research status for Three-Dimensional printing technology in rapid prototyping of powder material, Aeronautical Manufacturing Technology, 9, 42(2011)
7 (赵火平, 樊自田, 叶春生, 三维打印技术在粉末材料快速成形中的研究现状评述, 航空制造技术, 9, 42(2011))
8 Li L H, Kommareddy K P, Pilz C, Zhou C R, Fratzl P, Manjubala I, In vitro bioactivity of bioresorbable porous polymeric scaffolds incorporating hydroxyapatite microspheres, Acta Biomaterialia, 6, 2525(2010)
doi: 10.1016/j.actbio.2009.03.028 pmid: 19398393
9 Zeltinger J, Sherwood J K, Graham D A, Mueller R, Griffith L G, Effects of pore size and void fraction on cellular adhesion, proliferation, and matrix deposition, Tissue Eng., 7(5), 557(2001)
doi: 10.1089/107632701753213183 pmid: 11694190
10 Lam C X F, Mo X M, Teoh, Scaffold development using 3D printing with a starch-based polymer, Mater Sci. Eng. C, 20(1-2), 49(2001)
11 B. Y. Tay, S. X. Zhang, M. H. Myint, Processing of polycaprolactone porous structure for scaffold development, Journal of Materials Processing Technology, 182, 117(2007)
doi: 10.1016/j.jmatprotec.2006.07.016
12 Brian Derby, Nuno Reis, Inkjet printing of highly loaded particulate suspensions, MRS Bulletin, 28(11), 815(2003)
doi: 10.1557/mrs2003.230
13 Kay M L, Young R A, Crystal structure of hydroxylapatite, Nature, 204, 1050(1964)
14 WANG Yan'en, WEI Qinghua, YANG Mingming, WEI Shengmin, Molecular dynamics simulation of mechanical properties and surface interaction for HA/NBCA, Chinese Journal of Materials Research, 28(2), 333(2014)
14 (汪焰恩, 魏庆华, 杨明明, 魏生民, 羟基磷灰石/α-氰基丙烯酸正丁酯相互作用及力学性能的MD模拟, 材料研究学报, 28(2), 333(2014))
doi: 10.11901/1005.3093.2013.325
15 Andersen H C, Molecular dynamics simulations at constant pressure and /or temperature, Journal of Chemical Physics, 72, 2374(1980)
16 Tosi M P, Cohesion of ionic solids in the Born model, Solid State Physics, 16, 1(1964)
doi: 10.1016/S0081-1947(08)60515-9
17 Ewald P P, Evaluation of optical and electrostatic lattice potentials, Annals of Physic, 64, 253(1921)
18 WEI Qinghua, WANG Yanen, YANG Mingming, CHAI Weihong, ZHANG Yingfeng, Micro theoretical study on the compatibility and mechanical properties of polyacrylamide/polyvinyl alcohol blends, Journal of Functional Materials, 46(15), 15069(2015)
18 (魏庆华, 汪焰恩, 杨明明, 柴卫红, 张映锋, 聚丙烯酰胺/聚乙烯醇共混物相容性及力学性能的微观理论研究, 功能材料, 46(15), 15069(2015))
doi: 10.3969/j.issn.1001-9731.2015.15.013
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[4] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[5] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[6] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[7] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[8] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[9] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[10] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[11] 史畅, 杜宇航, 赖利民, 肖思明, 郭宁, 郭胜锋. CrTaTi难熔中熵合金的力学性能和抗氧化性能[J]. 材料研究学报, 2023, 37(6): 443-452.
[12] 雷志国, 文胜平, 黄晖, 张二庆, 熊湘沅, 聂祚仁. 冷轧变形和添加SiAl-2Mg-0.8Cu(-Si)合金的组织和力学性能的影响[J]. 材料研究学报, 2023, 37(6): 463-471.
[13] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[14] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[15] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.