Please wait a minute...
材料研究学报  2015, Vol. 29 Issue (12): 948-954    DOI: 10.11901/1005.3093.2015.12.948
  本期目录 | 过刊浏览 |
TMCP工艺对高韧性X90管线钢组织性能的影响
牛涛1(),姜永文1,李飞1,朱国森1,吴新朗2,武军宽2
1. 首钢技术研究院 北京 100043
2. 首钢股份公司迁安钢铁公司 迁安 064404
Effect of Thermo-mechanical Control Processing on Microstructure and Properties of High Toughness X90 Pipeline Steel
Tao NIU1,*(),Yongwen JIANG1,Fei LI1,Guosen ZHU1,Xinlang WU2,Junkuan WU2
1. Shougang Research Institute of Technology, Beijing 100043, China
2. Shougang Qian'an Iron & Steel Co.Ltd, Qian'an 064404, China
引用本文:

牛涛,姜永文,李飞,朱国森,吴新朗,武军宽. TMCP工艺对高韧性X90管线钢组织性能的影响[J]. 材料研究学报, 2015, 29(12): 948-954.
Tao NIU, Yongwen JIANG, Fei LI, Guosen ZHU, Xinlang WU, Junkuan WU. Effect of Thermo-mechanical Control Processing on Microstructure and Properties of High Toughness X90 Pipeline Steel[J]. Chinese Journal of Materials Research, 2015, 29(12): 948-954.

全文: PDF(6434 KB)   HTML
摘要: 

对高韧性X90管线钢进行实验室模拟轧制, 研究了TMCP的工艺参数加热温度、中间坯厚度和卷取温度对其综合力学性能和微观组织特征的影响。结果表明: 随着加热温度的提高强度先呈现上升趋势, 当加热温度达到1250℃左右时晶粒粗化严重, 强度显著下降; 中间坯厚度的增加有利于组织细化与均匀化, 从而提高钢板强度与韧性; 卷取温度对性能的影响最为显著, 在320℃左右卷取时可得到粒状贝氏体+板条贝氏体组织, 强韧性匹配达到最佳效果。结合实验室模拟参数进行了X90的工业试制, 钢卷在得到足够强度的同时具有优异的低温韧性。本文研究的TMCP工艺具有良好的实践效果。

关键词 金属材料管线钢X90TMCP组织性能    
Abstract

Effect of the main TMCP parameters on mechanical properties and microstructure characteristics of X90 pipeline steel was investigated by a labroratory simulated TMPC with desired processing parameters, including reheating temperature, intermediate slab thickness and coiling temperature. Results show that the strength increases with the increment of reheating temperature at first, but dramatically reduces when the grain size gets coarse at reheating temperature of 1250℃. Thicker intermediate slab contributes to higher strength and toughness because of a homogenized microstructure with refined grains was brought out. Coiling temperature plays the most important role in controlling the steel property. A microstructure composed of proper combination of granular banite and lath banite of the steel with optimal matching of strength and toughness can be achieved when coiling at 320℃. An industrial production of X90 coil were carried out employing the parameters obtained through the investigation, high strength combined with great low temperature toughness has been achieved, which proves that TMCP technology in this study has a good practice effect.

Key wordsmetallic materials    pipeline steel    X90    TMCP    microstructure    property
收稿日期: 2015-01-20     
No. Reheating temperature
/℃
Reheating time
/min
Intermediate slab thickness
/mm
Finishing rolling temperature
/℃
Coiling temperature
/℃
1# 1210 180 36 810 460
2# 1210 180 36 810 320
3# 1210 180 36 810 100
4# 1180 180 36 810 320
5# 1250 180 36 810 320
6# 1210 180 32 810 320
表1  试验方案
图1  加热温度对力学性能的影响
图2  加热温度对组织的影响
图3  中间坯厚度对组织的影响
图4  卷取温度对力学性能的影响
No. Intermediate slab thickness
/mm
Rp0.2
/MPa
Rm
/MPa
Auel
/%
A50.8
/%
Rp0.2/Rm Akv2/J
-20℃ -40℃ -60℃
5# 36 845 1003 3.3 24.8 0.84 265 261 171
6# 32 822 1005 3.3 24.2 0.82 193 204 166
表2  不同中间坯厚度性能对比
图5  卷取温度对组织的影响
图6  粒状贝氏体和M/A组元
图7  板条贝氏体、位错及残余奥氏体的衍射斑
Coil No. Rp0.2
MPa
Rm
MPa
A50.8
%
Y/T Akv2(-20℃)
J
HV10 DWTT(-15℃)
%
1310169121030 635 740 21 0.86 374 262 100
1310169121030 630 775 15 0.82 373 261 100
1310169221010 640 790 17 0.81 387 262 100
Standard 625~775 695~915 ≥14.2 ≤0.95 ≥295 ≤285 ≥85
表3  工业试制X90的力学性能
图8  系列温度冲击性能
图9  系列温度DWTT性能
1 LI Helin, JI Lingkang, TIAN Wei, High grade linepipe and high pressure transportation: significant progress of oil & gas transportation pipeline technology in China, Engineering Science, 12(5), 84(2010)
1 (李鹤林, 吉玲康, 田伟, 高钢级钢管和高压输送: 我国油气输送管道的重大技术进步, 中国工程科学, 12(5), 84(2010))
2 Hitoshi Asahi, Overview of Development and Commercialization of X120 Ultra-High Strength UOE Linepipe. Proceedings of International Symposiumon Microalloyed Steels for Oil & Gas Industry, Araxa-MG, Brazil, 2006: 24-26
3 Joe Zhou, Da-Ming Duan, David Taylor.Some considerations for successful applications of high grade line pipes, Ineternational Seminar on Application of high strength Linepipe 2010, Xi’an China, 2010: 28-29
4 Demofonti G, Mannucci G, Hillenbrand H-G, Evaluation of the suitability of X100 pipes for high pressure gas transmission pipelines by full scale tests, Proceedings of International Pipeline Conference2004, Canada Calgary Alberta: IPC, 2004: 2004-No.0415
5 WANG Xiaoxiang, Development Progress of Pipeline Steel with Extra-high Strength, Welded pipe and tube, 33(2), 5(2010)
5 (王晓香, 超高强管线钢管研发新进展, 焊管, 33(2), 5(2010))
6 QIAN Yajun, XIAO Wenyong, LIU Li, YUAN Renping, XIONG Xiangjiang, Development and Trial Production of X90M Pipeline Steel with Large Diameter, Welded pipe and tube, 37(1), 22(2014)
6 (钱亚军, 肖文勇, 刘理, 袁仁平, 熊祥江, 大直径X90M管线钢的开发与试制, 焊管, 37(1), 22(2014))
7 XIA Dianxiu, WANG Xuelin, LI Xiucheng, YOU Yang, SHANG Chengjia, Propreties and microstructure of third generation X90 pipeline steel, 46(3), 271(2013)
7 (夏佃秀, 王学林, 李秀程, 由洋, 尚成嘉, X90级别第三代管线钢的力学性能与组织特征, 金属学报, 46(3), 271(2013))
8 QI Liang, ZHAO Zhegnzhi, ZHAO Aimin, HUANG Yao, Effect of niobium on second phase precipitation and austenite grain growth behavior in high-grade pipeline steel, Journal of University of Science and Technology Beijing, 35(3), 304(2013)
8 (齐亮, 赵征志, 赵爱民, 黄耀, 铌对高钢级管线钢中第二相析出与奥氏体晶粒长大行为的影响, 北京科技大学学报, 35(3), 304(2013))
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[12] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[13] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[14] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[15] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.