Please wait a minute...
材料研究学报  2015, Vol. 29 Issue (8): 561-568    DOI: 10.11901/1005.3093.2014.566
  本期目录 | 过刊浏览 |
原位合成MoSi2-SiC复合材料700℃的氧化行为
张来启(),段立辉,林均品
北京科技大学新金属材料国家重点实验室 北京 100083
Oxidation Behavior of in-situ Synthesized MoSi2-SiC Composites at 700℃
Laiqi ZHANG(),Lihui DUAN,Junpin LIN
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

张来启,段立辉,林均品. 原位合成MoSi2-SiC复合材料700℃的氧化行为[J]. 材料研究学报, 2015, 29(8): 561-568.
Laiqi ZHANG, Lihui DUAN, Junpin LIN. Oxidation Behavior of in-situ Synthesized MoSi2-SiC Composites at 700℃[J]. Chinese Journal of Materials Research, 2015, 29(8): 561-568.

全文: PDF(5133 KB)   HTML
摘要: 

研究了不同SiC体积分数原位合成MoSi2-SiC复合材料在700℃空气中1000 h的长期氧化行为。结果表明: 复合材料氧化1000 h后, 均未发生pest现象。复合材料的氧化抗力明显好于单一MoSi2, 原位合成复合材料的氧化抗力好于传统的热压商用MoSi2粉末和SiC粉末混合物制备的复合材料(外加复合材料)。复合材料氧化膜相组成仅为非晶SiO2, 材料的氧化过程主要是O2与MoSi2的作用, SiC未发生氧化。材料在700℃下仍发生硅、钼的同时氧化, 因MoO3的挥发较快没有晶须形成, 因而在材料表面快速形成一薄层连续、致密的非晶SiO2保护膜, 使材料表现出优异的长期抗氧化性。

关键词 材料失效与保护MoSi2-SiC复合材料原位合成低温氧化行为pest现象    
Abstract

The long-term air oxidation behavior of in situ synthesized composites MoSi2-SiC with different volume fractions of SiC at 700 ℃ for 1000 h was investigated. The disintegration (pest) of the composites has not been observed after oxidation for 1000 h. The oxidation resistance of composites is significantly higher than that of monolithic MoSi2. The in situ synthesized composite MoSi2-30%SiC possesses higher oxidation resistance than the traditional composite with the same chemical composition fabricated by hot-pressing the mixture of commercial powders of MoSi2 and SiC. The oxide scale formed on the prepared composite is only composed of amorphous silica, therefore, the oxidation reaction of the materials may mainly occur between MoSi2 and O2. Silicon and molybdenum may simultaneously be oxidized at 700℃ for the composite, however, due to the faster volatilization of MoO3, thereby a thin continuous and dense amorphous SiO2 protective scale is rapidly formed on the composite surface, so the composite exhibits excellent long-term oxidation resistance.

Key wordsmaterials failure and protection    MoSi2-SiC composite    synthesized in situ    oxidation behavior at low temperature    pest
收稿日期: 2014-10-08     
基金资助:* 国家自然科学基金50871012和国家重点基础研究发展计划2011CB605502资助项目。
图1  6种材料样品在700℃氧化1000 h的动力学曲线及局部放大图
图2  WS、MS和MoSiC30 样品氧化1000 h后的XRD谱
图3  MS、MoSiC10、MoSiC30氧化膜表面Si2p、Mo3d、O1s的XPS窄谱图
Sample Element Binding energy /eV Corresponding phase Atom fraction/%
MS Mo3d 232.2 MoO3 0.50
Si2p 103.3 SiO2 28.12
O1s 532.2 SiO2 71.38
MoSiC10 Mo3d 0.25
Si2p 103.3 SiO2 32.11
O1s 532.2 SiO2 67.64
MoSiC30 Mo3d 0.15
Si2p 103.3 SiO2 29.79
O1s 532.2 SiO2 70.26
表1  样品 MS、MoSiC10、MoSiC30的XPS分析结果
图4  6种材料样品在700℃氧化1000 h后表面的宏观形貌
图5  6种材料样品在700℃氧化1000 h后氧化膜表面的SEM像
图6  MoSi2-SiC复合材料700℃氧化机理示意图
1 E. Fitzer, Molybdenum disilicide as high-temperature material, in: Proceedings of 2nd Plansee Seminar, edited by F. Benesovsky(Vienna, Springer, 1955) p.56
2 T. C. Chou, T. G. Nieh,New observations of MoSi2 pest at 500℃, Scripta Metallurgica et Materialia, 26(10), 1637(1992)
3 C. G. McKamey, P. F. Tortorelli, J. H. DeVan, C. A. Carmichael,A study of pest oxidation in polycrystalline MoSi2, Journal of Materials Research, 7(10), 2747(1992)
4 J. H. Westbrook, D. L. Wood,“PEST” degradation in beryllides, silicides, aluminides and related compounds, Journal of Nuclear Materials, 12(2), 208(1964)
5 J. X. Chen, C. H. Li, Z. Fu, X. Y. Tu, M. Sundberg, R. Pompe,Low temperature oxidation behavior of a MoSi2-based material, Materials Science and Engineering A, 261(1-2), 239(1999)
6 J. Kuchino, K. Kurokawa, T. Shibayama, H. Takahashi,Effect of microstructure on oxidation resistance of MoSi2 fabricated by spark plasma sintering, Vacuum, 73(3-4), 623(2004)
7 K. Kurokawa, H. Houzumi, I. Saeki, H. Takahashi,Low temperature oxidation of fully dense and porous MoSi2, Materials Science and Engineering A, 261, 292(1999)
8 J. Arreguín-Zavala, S. Turenne, A. Martel, A. Benaissa,Microwave sintering of MoSi2-Mo5Si3 to promote a final nanometer-scale microstructure and suppressing of pesting phenomenon, Materials Characterization, 68, 117(2012)
9 K. Yanagihara, T. Maruyama, K. Nagata,Effect of third elements on the pesting suppression of Mo-Si-X intermetallics (X=Al, Ta, Ti, Zr and Y), Intermetallics, 4, S133(1996)
10 T. Dasgupta, A. M. Umarji,Improved ductility and oxidation resistance in Nb and Al cosubstituted MoSi2, Intermetallics, 16(6), 739(2008)
11 E. Str?m, Y. Cao, Y. M. Yao,Low temperature oxidation of Cr-alloyed MoSi2, Transactions of Nonferrous Metals Society of China, 17(6), 1282(2007)
12 K. Natesan, S. C. Deevi,Oxidation behavior of molybdenum silicides and their composites, Intermetallics, 8, 1147(2000)
13 ZHOU Hongming,LIU Gongqi, XIAO Lairong, YI Danqing, ZENG Lin, Low temperature oxidation behavior of MoSi2 composites strengthened and toughened by Si3N4 particles and SiC whiskers, Journal of Inorganic Materials, 24(5), 929(2009)
13 (周宏明, 柳公器, 肖来荣, 易丹青, 曾 麟, Si3N4颗粒及SiC晶须强韧化MoSi2复合材料的低温氧化行为, 无机材料学报, 24(5), 929(2009))
14 K. Hansson, M. Halvarsson, J. E. Tang,Oxidation behaviour of a MoSi2-based composite in different atmospheres in the low temperature range (400-550℃), Journal of the European Ceramic Society, 24, 3559(2004)
15 P. Z. Feng, X. H. Wang, Y. Q. He, Y. H. Qiang,Effect of high-temperature preoxidation treatment on the low-temperature oxidation behavior of a MoSi2-based composite at 500℃, Journal of Alloys and Compounds, 473(1-2), 185(2009)
16 YAN Jianhui,WANG Jinlin, TANG Siwen, In-situ synthesis and low temperature oxidation properties of TiC-MoSi2 composites, Transaction of Materials and Heat Treatment, 32(1), 5(2011)
16 (颜建辉, 王金林, 唐思文, TiC-MoSi2复合材料的原位合成及其低温氧化特性, 材料热处理学报, 32(1), 5(2011))
17 SUN Zuqing,ZHANG Laiqi, YANG Wangyue, ZHANG Yue, FU Xiaowei, A method of the preparation of in situ silicon carbide particulates reinforced molybdenum disilicide matrix composites, China Patent, ZL01141978.4(2005)
17 (孙祖庆, 张来启, 杨王玥, 张 跃, 傅晓伟, 一种制备碳化硅颗粒增强二硅化钼基复合材料的原位复合方法, 中国专利, ZL01141978.4(2005))
18 ZHANG Laiqi,SUN Zuqing, ZHANG Yue, YANG Wangyue, CHEN Guangnan, Microstructure and mechanical properties of in situ SiC particulates reinforced MoSi2 matrix composite, Acta Metallurgica Sinica, 37(3), 325(2001)
18 (张来启, 孙祖庆, 张 跃, 杨王玥, 陈光南, 原位SiC颗粒增强MoSi2基复合材料的显微组织和力学性能, 金属学报, 37(3), 325(2001))
19 FU Xiaowei,YANG Wangyue, ZHANG Laiqi, SUN Zuqing, ZHU Jing, High temperature creep behavior of in situ synthesized MoSi2-30%SiC composite, Acta Metallurgica Sinica, 38(7), 731(2002)
19 (傅晓伟, 杨王玥, 张来启, 孙祖庆, 朱 静,原位合成MoSi2-30%SiC复合材料高温蠕变行为, 金属学报, 38(7), 731(2002))
20 ZHANG Laiqi,PAN Kunming, DUAN Lihui, LIN Junpin, Oxidation behavior of in-situ synthesized MoSi2-SiC composites at 500℃, Acta Metallurgica Sinica, 49(11), 1303(2013)
20 (张来启, 潘昆明, 段立辉, 林均品, 原位合成MoSi2-SiC复合材料在500℃的氧化行为, 金属学报, 49(11), 1303(2013))
21 J. A. Lely, Shi ER, Silicon Carbide Semi-conductor at High Temperature (Shanghai, Shanghai Science and Technology Press, 1962) p.138
21 (J. A. 列来, 珥石编译, 碳化硅高温半导体(上海, 上海科学技术出版社, 1962) p.138)
22 T. C. Chou, T. G. Nieh,Comparative studies on the pest reactions of single-and poly-crystalline MoSi2, Scripta Metallurgica et Materialia, 27(1), 19(1992)
23 P. J. Meschter,Low-temperature oxidation of molybdenum disilicide, Metallurgical Transactions A, 23(6), 1763(1992)
24 T. A. Parthasarethy, M. G. Mendiratta, D. M. Dimiduck,Oxidation mechanisms in Mo-reinforced Mo5SiB2(T2)-Mo3Si alloys, Acta Materialia, 50(7), 1857(2002)
[1] 高巍, 刘江南, 魏敬鹏, 要玉宏, 杨巍. TC4钛合金表面氧化亚铜掺杂微弧氧化层的结构和性能[J]. 材料研究学报, 2022, 36(6): 409-415.
[2] 杨留洋, 谭卓伟, 李同跃, 张大磊, 邢少华, 鞠虹. 利用WBEEIS测试技术对管道缺陷区动态冲刷腐蚀行为的研究[J]. 材料研究学报, 2022, 36(5): 381-391.
[3] 陈铮, 杨芳, 王成, 杜瑶, 卢壹梁, 朱圣龙, 王福会. 惰性无机填料比例和颗粒尺寸对纳米Al/Al2O3 改性有机硅涂料抗高温氧化行为的影响[J]. 材料研究学报, 2022, 36(4): 271-277.
[4] 李玉峰, 张念飞, 刘丽爽, 赵甜甜, 高文博, 高晓辉. 含磷石墨烯的制备及复合涂层的耐蚀性能[J]. 材料研究学报, 2022, 36(12): 933-944.
[5] 陈艺文, 王成, 娄霞, 李定骏, 周科, 陈明辉, 王群昌, 朱圣龙, 王福会. 无机复合涂层对CB2铁素体耐热钢在650℃水蒸气中的防护[J]. 材料研究学报, 2021, 35(9): 675-681.
[6] 唐荣茂, 刘光明, 刘永强, 师超, 张帮彦, 田继红, 甘鸿禹. 用电化学噪声技术研究Q235钢在含氯盐模拟混凝土孔隙液中的腐蚀行为[J]. 材料研究学报, 2021, 35(7): 526-534.
[7] 胡满银, 欧阳德来, 崔霞, 杜海明, 徐勇. 微波烧结原位合成TiC增强钛复合材料的性能[J]. 材料研究学报, 2021, 35(4): 277-283.
[8] 张大磊, 魏恩泽, 荆赫, 杨留洋, 豆肖辉, 李同跃. 超级铁素体不锈钢表面超疏水结构的制备及其耐腐蚀性能[J]. 材料研究学报, 2021, 35(1): 7-16.
[9] 王冠一, 车欣, 张浩宇, 陈立佳. Al-5.4Zn-2.6Mg-1.4Cu合金板材的低周疲劳行为[J]. 材料研究学报, 2020, 34(9): 697-704.
[10] 黄安然, 张伟, 王学林, 尚成嘉, 范佳杰. 铁素体不锈钢在高温尿素环境中的腐蚀行为研究[J]. 材料研究学报, 2020, 34(9): 712-720.
[11] 公维炜, 杨丙坤, 陈云, 郝文魁, 王晓芳, 陈浩. 扫描电化学显微镜原位观察碳钢涂层缺陷处的交流腐蚀行为[J]. 材料研究学报, 2020, 34(7): 545-553.
[12] 郭铁明, 徐秀杰, 张延文, 宋志涛, 董志林, 金玉花. Q345q桥梁钢和Q345qNH耐候钢在模拟工业大气+除冰盐混合介质中的腐蚀行为[J]. 材料研究学报, 2020, 34(6): 434-442.
[13] 朱金阳, 谭成通, 暴飞虎, 许立宁. 一种新型含AlCr合金钢在模拟油田采出液环境下的CO2腐蚀行为[J]. 材料研究学报, 2020, 34(6): 443-451.
[14] 梁新磊, 刘茜, 王刚, 王震宇, 韩恩厚, 王帅, 易祖耀, 李娜. 氧化石墨烯改性环氧隔热涂层的耐蚀和隔热性能研究[J]. 材料研究学报, 2020, 34(5): 345-352.
[15] 王志虎,张菊梅,白力静,张国君. 水热处理对AZ31镁合金微弧氧化陶瓷层组织结构及耐蚀性的影响[J]. 材料研究学报, 2020, 34(3): 183-190.