Please wait a minute...
材料研究学报  2015, Vol. 29 Issue (1): 1-9    DOI: 10.11901/1005.3093.2014.293
  本期目录 | 过刊浏览 |
纳米纤维素/阳离子聚合物复合三维组织工程支架的性能*
唐爱民(),刘远,赵姗
华南理工大学 制浆造纸工程国家重点实验室 广州 510640
Performance of 3D Tissue Engineering Scaffolds of Nanocellulose/High Cationic Polymers Composite
Aimin TANG(),Yuan LIU,Shan ZHAO
State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
引用本文:

唐爱民,刘远,赵姗. 纳米纤维素/阳离子聚合物复合三维组织工程支架的性能*[J]. 材料研究学报, 2015, 29(1): 1-9.
Aimin TANG, Yuan LIU, Shan ZHAO. Performance of 3D Tissue Engineering Scaffolds of Nanocellulose/High Cationic Polymers Composite[J]. Chinese Journal of Materials Research, 2015, 29(1): 1-9.

全文: PDF(8473 KB)   HTML
摘要: 

将纳米纤维素分别与高阳离子度的丙烯酸类、乙烯胺类聚合物复合, 制备出三维多孔组织工程支架并通过SEM观察了支架的形貌结构, 研究了高阳离子度的丙烯酸类、乙烯胺类聚合物的相对分子质量和用量对支架孔隙结构的影响; 用图像处理软件对采集的支架截面SEM图进行处理, 通过统计计算获得支架孔隙率数据, 建立了一种基于SEM图像快速测定支架孔隙率的新方法; 最后测定了支架的保水值。结果表明: 本文制备的纳米纤维素三维组织工程支架的孔隙率均大于90%。用图像处理得到的孔隙率与用液体置换法测得的孔隙率数值接近, 误差低于5%, 表明用图像处理方法测定的孔隙率可靠。纳米纤维素三维组织工程支架有很高的保水值(>200%), 调整阳离子聚合物的种类和用量可调控其孔隙率和保水值, 得到适合组织细胞培养的纳米纤维素三维组织工程支架。

关键词 复合材料纳米纤维素组织工程支架图像处理    
Abstract

Three-dimensional (3D) tissue engineering scaffolds were prepared by compounding nanocellulose with polyacrylic cationic polymer and polyethylene amine cationic polymer respectively. The structural morphology of the scaffolds was characterized by scanning electron microscopy (SEM).The influence of the relative molecular mass and dosages of the polymers on the pore structure of the scaffolds was investigated, while a new method for fast measuring the porosity of the scaffolds was established based on SEM image processing. The water retention value (WRV) of the scaffolds was also measured. Results show that the porosity of all the nanocellulose 3D tissue engineering scaffolds is larger than 90%. The porosity value obtained by the new image processing method is close to that measured according to Archimedes principle with a difference less than 5%, which indicated that this method was reliable. All the 3D scaffolds have high WRV (>200%). Both the porosity and WRV of the 3D scaffolds can be adjusted by varying the species and dosage of polymers. Therewith the nanocellulose 3D tissue engineering scaffolds may optionally be prepared to meet the requirement for tissue and cell culture.

Key wordscomposites    nanocellulose    tissue engineering scaffold    image processing
收稿日期: 2014-06-18     
基金资助:* 国家重点基础研究发展计划2010CB732206资助项目。
图1  纳米纤维素的AFM像
图2  纳米纤维素与聚合物A复合支架的SEM像
图3  纳米纤维素与聚合物B复合支架的SEM像
图4  液体置换法测定的纳米纤维素分别与聚合物A、B复合支架的孔隙率
Mass percentage of polymer A /% Image processing /% Liquid displacement /% Absolute error/% Relative error/%
0.79 94.98 97.42 2.44 2.5
1.57 93.43 93.24 0.19 0.2
3.85 7.41 93.57 93.70 92.02 90.37 1.55 3.33 1.68 3.68
表1  纳米纤维素/聚合物A复合支架孔隙率的图像处理法和液体置换法测试数据比较
Mass percentage of polymer B/% Image processing/% Liquid displacement/% Absolute error/% Relative error/%
0.79 92.41 93.96 1.55 1.65
1.57 94.93 96.76 1.83 1.89
3.85 7.41 90.67 92.40 91.65 90.77 0.98 1.63 1.07 1.79
表2  纳米纤维素/聚合物B复合支架孔隙率的图像处理法和液体置换法测试数据比较
  
1 ZHANG Anxiong,LV Delong, ZHONG Wei, CHENG Weizhuang, DU Qiangguo, Study advances in natural biomaterials for tissue engineering, Beijing Biomedical Engineering, 24(5), 387(2005)
1 (张安兄, 吕德龙, 钟 伟, 程为庄, 杜强国, 天然生物材料构建组织工程支架的研究进展,?北京生物医学工程, 24(5), 387(2005))
2 R. Langer, J. P. Vacanti,Tissue engineering, Science, 260(5110), 920(1993)
3 J. M. Holzwarth, P. X. Ma,Biomimetic nanofibrous scaffolds for bone tissue engineering,?Biomaterials, 32(36), 9622(2011)
4 Michael Keeney, Janice H. Lai,Fan Yang, Recent progress in cartilage tissue engineering, Current Opinion in Biotechnology, 22(5), 734(2011)
5 D. Y. Lewitus, J. Landers, J. R. Branch, K. L. Smith, G. Callegari, J. Kohn, A. V. Neimark,Biohybrid carbon nanotube/agarose fibers for neural tissue engineering, Advanced Functional Materials, 21(14), 2624(2011)
6 S. He, T. Xia, H. Wang, L. Wei, X. Luo, X. Li,Multiple release of polyplexes of plasmids VEGF and bFGF from electrospun fibrous scaffolds towards regeneration of mature blood vessels, Acta Biomaterialia, 8(7), 2659(2012)
7 S. B?ttcher-Haberzeth, T. Biedermann, A. S.Klar, L. Pontiggia, J. Rac, D. Nadal, M. Meuli,Tissue engineering of skin: human tonsil-derived mesenchymal cells can function as dermal fibroblasts, Pediatric Surgery International, 30(2), 213(2014)
8 B. Andrée, A. B?r, A. Haverich, A. Hilfiker,Small intestinal submucosa segments as matrix for tissue engineering: review, Tissue Engineering Part B: Reviews, 19(4), 279(2013)
9 T. Saito, M. Hirota, N. Tamura, S. Kimura, H. Fukuzumi, L. Heux, A. Isogai,Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions, Biomacromolecules, 10(7), 1992(2009)
10 S. Iwamoto, A. N. Nakagaito, H. Yano,Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites, Applied Physics A, 89(2), 461(2007)
11 T. Lu, Q. Li, W. Chen, H. Yu,Composite aerogels based on dialdehyde nanocellulose and collagen for potential applications as wound dressing and tissue engineering scaffold, Composites Science and Technology, 94, 132(2014)
12 I. Siró, D. Plackett,Microfibrillated cellulose and new nanocomposite materials: a review, Cellulose, 17(3), 459(2010)
13 R. J. Moon, A. Martini, J. Nairn, J. Simonsen, J. Youngblood,Cellulose nanomaterials review: structure, properties and nanocomposites, Chemical Society Reviews, 40(7), 3941(2011)
14 E. M. Fernandes, R. A. Pires, J. F. Mano, R. L. Reis,Bionanocomposites from lignocellulosic resources: Properties, applications and future trends for their use in the biomedical field, Progress in Polymer Science, 38(10), 1415(2013)
15 Jiankang Song,Aimin Tang, Tingting Liu, Jufang Wang, Fast and continuous preparation of high polymerization degree cellulose nanofibrils and their three-dimensional macroporous scaffold fabrication, Nanoscale, 5(6), 2482(2013)
16 F J O'Brien,Biomaterials & scaffolds for tissue engineering, Materials Today, 14(3), 88(2011)
17 C. M. Murphy, M. G. Haugh, F. J. O'Brien,The effect of mean pore size on cell attachment, proliferation and migration in collagen–glycosaminoglycan scaffolds for bone tissue engineering, Biomaterials, 31(3), 461(2010)
18 B. J. Story, W. R. Wagner, D. M. Gaisser, S. D. Cook, A. M. Rust-Dawicki,In vivo performance of a modified CSTi dental implant coating, International Journal of Oral & Maxillofacial Implants, 13(6), 749(1998)
19 G. Shi, Q. Cai, C. Wang, N. Lu, S. Wang, J. Bei,Fabrication and biocompatibility of cell scaffolds of poly (L‐lactic acid) and poly (L‐lactic‐co‐glycolic acid), Polymers for Advanced Technologies, 13(3-4), 227(2002)
20 LIU Qi,HU Yafei, XIONG Jianjun, Experimental study on porosity measurement on graphite porous materials, Lubrication Engineering, 35(10), 99(2010)
20 (刘 颀, 胡亚非, 熊建军, 石墨多孔材料孔隙率测定方法研究, 润滑与密封, 35(10), 99(2010))
21 S. Maria,Methods for porosity measurement in lime-based mortars, Construction and Building Materials, 24(12), 2572(2010)
22 TANG Chaosheng,SHI Bin, WANG Baojun, Factors affecting analysis of soil microstructure using SEM, Chinese Journal of Geotechnical Engineering, 30(4), 560(2008)
22 (唐朝生, 施 斌, 王宝军, 基于SEM土体微观结构研究中的影响因素分析, 岩土工程学报, 30(4), 560(2008))
23 ZHOU Ming,WANG Hongbo, WANG Yinli, GAO Weidong, Characterization of porosity of nanofiber membrane based on image processing technology, Journal of Textile Research, 33(1), 20(2012)
23 (周 明, 王鸿博, 王银利, 高卫东, 基于图像处理技术的纳米纤维膜孔隙率表征, 纺织学报, 33(1), 20(2012))
24 D. Depan, P. K. C. Venkata Surya, B. Girase, R. D. K. Misra,Organic/inorganic hybrid network structure nanocomposite scaffolds based on grafted chitosan for tissue engineering, Acta biomaterialia, 7(5), 2163(2011)
25 S. Ucar, P. Yilgor, V. Hasirci, N. Hasirci,Chitosan‐based wet‐spun scaffolds for bioactive agent delivery,?Journal of Applied Polymer Science, 130(5), 3759(2013)
26 S. Attaway,Matlab: A practical introduction to programming and problem solving, Elsevier, (2012)
27 SONG Jiankang,Preparation of cellulose nanofibrils and their application in tissue engineering scaffold, Master degree (South China University of Technology, 2012)
27 (宋建康, 纤维素纳米纤维的制备及其在组织工程支架中的应用, 硕士论文(华南理工大学, 2012))
28 X. Luo, J. Y. Zhu,Effects of drying-induced fiber hornification on enzymatic saccharification of lignocelluloses, Enzyme and Microbial Technology, 48(1), 92(2011)
29 HUANG Jinzhong,LI Xuesheng, LU Zejian, QUAN Daping, In vitro and in vivo study on the degradation and biocompatibility of a poly-DL-lactide(PLE) polymer, modem Rehabilitation, 5(7), 58(2001)
29 (黄金中, 李雪盛, 卢择俭, 全大萍, 新型高孔隙率海绵状聚乳酸支架在软骨组织工程研究和应用中的意义, 现代康复, 5(7), 58(2001))
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.