Please wait a minute...
材料研究学报  2015, Vol. 29 Issue (1): 10-16    DOI: 10.11901/1005.3093.2014.140
  本期目录 | 过刊浏览 |
常压空气等离子体对连续纤维的在线改性*
贾彩霞1,陈平1,2(),王乾2,王静1,任荣1
1. 沈阳航空航天大学 辽宁省先进聚合物基复合材料制备技术重点实验室 沈阳 110136
2. 大连理工大学化工学院 三束材料改性教育部重点实验室 大连 116024
On-line Modification of Continuous Fibers by Atmospheric Air Plasma
Caixia JIA1,Ping CHEN1,2,**(),Qian WANG2,Jing WANG1,Rong REN1
1. Liaoning Key Laboratory of Advanced Polymer Matrix Composites Manufacturing Technology, Shenyang Aerospace University, Shenyang 110136, China
2. Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education) & School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
引用本文:

贾彩霞,陈平,王乾,王静,任荣. 常压空气等离子体对连续纤维的在线改性*[J]. 材料研究学报, 2015, 29(1): 10-16.
Caixia JIA, Ping CHEN, Qian WANG, Jing WANG, Rong REN. On-line Modification of Continuous Fibers by Atmospheric Air Plasma[J]. Chinese Journal of Materials Research, 2015, 29(1): 10-16.

全文: PDF(1917 KB)   HTML
摘要: 

采用常压空气介质阻挡放电(DBD)等离子体技术, 分别对PBO、Armos和Twaron 3种高性能连续纤维进行了在线改性处理。使用X-射线光电子能谱(XPS)、扫描电子显微镜(SEM)、原子力显微镜(AFM)、单丝拉伸强度(SFTS)和层间剪切强度(ILSS)等手段对比分析了纤维化学组成、物理形貌与粗糙度、拉伸性能以及纤维增强复合材料界面粘结性能的变化。结果表明: DBD改性后3种纤维表面的氧、氮元素含量以及粗糙程度均增加, 其增强的复合材料ILSS分别提高了18.6%, 10.2%和24.8%。但是3种纤维的表面氧、氮含量增加程度以及受刻蚀程度却有显著的差异。这可能与纤维的分子构成和耐热性能有一定的关系, 综合影响了DBD对复合材料界面粘结性能的改善。同时, 在纤维表面及其复合材料界面性能明显改善的等离子体处理条件下, 纤维的SFTS没有明显的下降。

关键词 有机高分子材料在线改性常压空气等离子体表面界面    
Abstract

Three high-performance continuous fibers PBO, Armos and Twaron were on-line modified by atmospheric air dielectric barrier discharge (DBD) plasma. Then the modified fibers were characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM), measurements of single fiber tensile strength (SFTS) and interlaminar shear strength (ILSS) in terms of their surface chemical composition, morphology, roughness and tensile strength, as well as interfacial adhesion properties of fiber reinforced composites respectively. Results showed that the oxygen and nitrogen content, and the roughness of fiber surface after DBD plasma modification with PBO, Armos and Twaron were all increased, and the ILSS of their composites were enhanced by 18.6%, 10.2% and 24.8%, respectively. However, it is important to note that there were significant differences in the increment of oxygen and nitrogen content as well as the etching effect of the surface for the three modified fibers, which might be related to the difference of their molecular structures and thermal performances. Apparently, the atmospheric air dielectric barrier discharge (DBD) plasma treatment is proved to be an effective means to improve the surface performance of the fibers while no harm to their SFTS and thereby the ILSS of the composite composed of a resin with the three fibers may obviously be enhanced.

Key wordsorganic polymer materials    on-line modification    atmospheric air plasma    surface    interface
收稿日期: 2014-03-26     
基金资助:* 国防“十二五”基础科研项目A352×××××××, 国家自然科学基金51303106, 辽宁省教育厅科学研究一般项目L2014056和沈阳航空航天大学博士启动基金13YB05资助。
Fiber sample Chemical structure Diameter /m Density /kg/m3 Long-term working temperature /K Thermal decomposition temperature /K
PBO 1.2×10-5 1.56×103 573 923-973
Armos 1.5×10-5 1.45×103 473 823-873
Twaron 1.2×10-5 1.44×103 453 753-833
表1  PBO, Armos和Twaron纤维的结构与性能
图1  DBD等离子体处理和复合材料制备流程简图
Electrode diameter /m Discharge gap /m Dielectric thickness /m Output Power /W Time /s Pressure /Pa Output frequency /Hz
4.7×10-2 0.3×10-2 0.1×10-2 150 10 1.013×105 2.7×104
表2  DBD等离子体处理工艺参数
图2  DBD等离子体处理前后PBO、Armos和Twaron纤维的XPS全扫描谱
图3  经DBD等离子体处理后PBO、Armos和Twaron纤维的O、N元素增长率对比
图4  经DBD等离子体处理后PBO、Armos和Twaron纤维的SEM像
图5  纤维/PPESK复合材料的ILSS和增长率对比
Fiber sample Before DBD treatment After DBD treatment
Rq/m Ra/m Rq/m Ra/m
PBO 1.88×10-7 2.08×10-7 2.12×10-7 2.32×10-7
Armos 2.18×10-7 2.06×10-7 2.60×10-7 2.44×10-7
Twaron 2.01×10-7 1.89×10-7 2.44×10-7 2.26×10-7
表3  DBD等离子体处理前后纤维表面的粗糙度变化
图6  DBD等离子体处理前后纤维/PPESK复合材料的SFTS
1 T. Kitagawa, K. Yabuki, R.J. Young,An investigation into the relationship between processing, structure and properties for high-modulus PBO fibres. Part 1. Raman band shifts and broadening in tension and compression, Polymer, 42, 2101(2001)
2 G. M. Wu,Oxygen plasma treatment of high performance fibers for composites, Materials Chemistry and Physics, 85, 81(2004)
3 HUANG Yudong,PBO super fiber and its surface treatment, Hi-Tech Fiber & Application, 26(1), 11(2001)
3 (黄玉东,PBO超级纤维研究进展及其表面处理, 高科技纤维与应用, 26(1), 11(2001))
4 K. E. Perepelkin, I. V. Andreeva, E. A. Pakshver, I. Y. Morgoeva,Thermal Characteristic of para-aramid fibers, Fibre Chemistry, 35, 265(2003)
5 Y. H. Zhang, Y. D. Huang, L. Liu, L. N. Wu,Surface modification of aramid fibers with γ-Ray radiation for improving interfacial bonding strength with epoxy resin, Journal of Applied Polymer Science, 106, 2251(2007)
6 R. J. Day, K. D. Hewson, P. A. Lovell,Surface modification and its effect on the interfacial properties of model aramid-fibre/epoxy composites, Composites Science and Technology, 62, 153(2002)
7 K. Q. Luo, J. H. Jin, S. L. Yang, G. Li, J. M. Jiang,Improvement of surface wetting properties of poly(p-phenylene benzoxazole) by incorporation of ionic groups, Materials Science and Engineering B, 132, 59(2006)
8 XIE Linkun,YE Xi, WU Zhangkang, DENG Qiping, CHAI Xijuan, LIANG Yanjun, Study on surface modification of low density polyethylene (LDPE) film by low temperature plasma treatment, Chinese Journal of Materials Research, 24(6), 661(2010)
8 (解林坤, 叶 喜, 吴章康, 邓启平, 柴希娟, 梁艳君, 低温等离子体对低密度聚乙烯(LDPE)薄膜表面改性的研究, 材料研究学报, 24(6), 661(2010))
9 SU Fenghua,ZHANG Zhaozhu, WANG Kun, JIANG Wei, LIU Weimin, Tribological properties of carbon fabric composite treated with plasma, Chinese Journal of Materials Research, 19(4), 437(2005)
9 (苏峰华, 张招柱, 王 坤, 姜 葳, 刘维民, 等离子处理碳纤维织物复合材料的摩擦学性能, 材料研究学报, 19(4), 437(2005))
10 N. De Geyter, R. Morent, C. Leys, Surface modification of a polyester non-woven with a dielectric barrier discharge in air at medium pressure, Surface and Coatings Technology, 201, 2460(2006)
11 S. J. Park, H. J. Sohn, S. K. Hong, G. S. Shin,Influence of atmospheric fluorine plasma treatment on thermal and dielectric properties of polyimide film, Journal of Colloid and Interface Science, 332, 246(2009)
12 XU Xincan,ZHANG Shunhua, Study on the strength and dyeing properties of UHMWPE fibers by ADBD plasma treatment, Acta Polymerica Sinica, 12, 1520(2013)
12 (徐鑫灿, 张顺花, ADBD等离子体处理UHMWPE纤维的强度及染色性能研究, 高分子学报, 12, 1520(2013))
13 N. Dumitrascu, C. Borcia,Adhesion properties of polyamide-6 fibres treated by dielectric barrier discharge, Surface and Coatings Technology, 201, 1117(2006)
14 G. Borcia, C. A. Anderson, N. M. D. Brown,Using a nitrogen dielectric barrier discharge for surface treatment, Plasma Sources Science and Technology, 14, 259(2005)
15 K. L. Wang, W. C. Wang, D. Z. Yang, Y. Huo, D. Z.Wang,Surface modification of polypropylene non-woven fabric using atmospheric nitrogen dielectric barrier discharge plasma, Applied Surface Science, 256, 6859(2010)
16 M. Xi, Y. L. Li, S. Y. Shang, D. H. Li, Y. X. Yin, X. Y. Dai, Surface modification of aramid fiber by air DBD plasma at atmospheric pressure with continuous on-line processing, Surface and Coatings Technology, 202, 6029(2008)
17 CHEN Ping,LU Chun, WANG Jing, ZHANG Chengshuang, YU Qi, Interfacial studies of continuous fibers reinforced poly(aromatic ethers) containing phthalazinone moieties, Acta Polymerica Sinica, 1, 38(2011)
17 (陈 平, 陆 春, 王 静, 张承双, 于 祺, 连续纤维增强含二氮杂萘酮联苯结构聚芳醚砜酮树脂基复合材料的界面, 高分子学报, 1, 38(2011))
18 Q. Wang, P. Chen, C. X. JIa, M. X. Chen, B. Li,Improvement of PBO fiber surface and PBO/PPESK composite interface properties with air DBD plasma treatment, Surface and Interface Analysis, 44, 548(2012)
19 C. X. Jia, P. Chen, Q. Wang, B. Li, M. X. Chen,Surface wettability of atmospheric dielectric barrier discharge processed Armos fibers, Applied Surface Science, 258, 388(2011)
20 C. X. Jia, P. Chen, W. Liu, B. Li, Q. Wang, Surface treatment of aramid fiber by air dielectric barrier discharge plasma at atmospheric pressure, Applied Surface Science, 257, 4165(2011)
21 HU Fuzeng, Surface and Interface of Materials (Shanghai, East China University of Science and Technology Press, 2008) p.102
21 (102)
22 PEI Jinchang,Physicochemical properties of Plasma and its application(III), Printing and Dyeing, 13, 41(2005)
22 (裴晋昌, 低温等离子体物理化学基础及其应用(三), 印染, 13, 41(2005))
23 HU Jianhang,FANG Zhi, ZHANG Cheng, ZHAO Longzhang, Research progress in surface modification of materials using dielectric barrirer discharge, Materials Review, 21(9), 71(2007)
23 (胡建杭, 方 志, 章 程, 赵龙章, 介质阻挡放电材料表面改性研究进展, 材料导报, 21(9), 71(2007))
24 D. Liu, P. Chen, J.J. Mu, Q. Yu, C. Lu,Improvement and mechanism of interfacial adhesion in PBO fiber/bismaleimide composite by oxygen plasma treatment, Applied Surface Science, 257, 6935(2011)
25 W. G. Pitt, J. E. Lakenan, A. B. Strong,The influence of plasma gas species on the adhesion of thermoplastic to organic fibers, Journal of Applied Polymer Science, 48, 845(2003)
26 A. T. DiBenedetto, S. J. Huang, D. Birch, J. Gomez, W. C. Lee,Reactive coupling of fibers to engineering thermoplastics, Composite Structures, 27, 73(1994)
27 U. Kogelschatz,Dielectric-barrier discharges: their history, discharge physics, industrial applications, Plasma Chemistry and Plasma Processing, 23, 1(2003)
28 K. K. Wong, X. M. Tao, C. W. M. Yuen, K. W. Yeung,Low temperature plasma treatment of linen, Textile Research Journal, 69, 846(1999)
[1] 王乾, 蒲磊, 贾彩霞, 李志歆, 李俊. 碳纤维/环氧复合材料界面改性的不均匀性[J]. 材料研究学报, 2023, 37(9): 668-674.
[2] 陆益敏, 马丽芳, 王海, 奚琳, 徐曼曼, 杨春来. 脉冲激光沉积技术生长铜材碳基保护膜[J]. 材料研究学报, 2023, 37(9): 706-712.
[3] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[4] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[7] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[8] 李瀚楼, 焦晓光, 朱欢欢, 赵晓欢, 矫庆泽, 冯彩虹, 赵芸. 支链含氟聚酯的合成和性能[J]. 材料研究学报, 2023, 37(4): 315-320.
[9] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] 马逸舟, 赵秋莹, 杨路, 裘进浩. 热塑型聚酰亚胺/聚偏氟乙烯全有机复合薄膜的制备及其介电储能[J]. 材料研究学报, 2023, 37(2): 89-94.
[11] 陈瑞志, 刘丽荣, 郭圣东, 张迈, 卢广先, 李远, 赵云松, 张剑. 一种6Re/3Ru镍基单晶高温合金微观组织的稳定性和高温持久性能[J]. 材料研究学报, 2023, 37(10): 721-730.
[12] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.
[13] 闫春良, 郭鹏, 周靖远, 汪爱英. Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为[J]. 材料研究学报, 2023, 37(10): 747-758.
[14] 陈开旺, 张鹏林, 李树旺, 牛显明, 胡春莲. 莫来石粉末化学镀镍和涂层的高温摩擦学性能[J]. 材料研究学报, 2023, 37(1): 39-46.
[15] 单位摇, 王永利, 李静, 熊良银, 杜晓明, 刘实. 锆合金表面Cr基涂层的耐高温氧化性能[J]. 材料研究学报, 2022, 36(9): 699-705.