Please wait a minute...
材料研究学报  2014, Vol. 28 Issue (7): 497-502    DOI: 10.11901/1005.3093.2013.936
  本期目录 | 过刊浏览 |
连续驱动摩擦焊接头的特征形貌和性能*
李鹏1,2(),李京龙2,梁力2,熊江涛2,张赋升2,钱锦文2
1. 西北工业大学凝固技术国家重点实验室 西安 710072
2. 西北工业大学摩擦焊接陕西省重点实验室 西安 710072
Morphological Characteristics and Mechanical Property of Continuous Drive Friction Welded Joints of Carbon Steel 45(GB)
Peng LI1,2,**(),Jinglong LI2,Li LIANG2,Jiangtao XIONG2,Fusheng ZHANG2,Jinwen QIAN2
1. State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072
2. Shaanxi Key Laboratory of Friction Welding Technologies, Northwestern University, Xi’an 710072
引用本文:

李鹏,李京龙,梁力,熊江涛,张赋升,钱锦文. 连续驱动摩擦焊接头的特征形貌和性能*[J]. 材料研究学报, 2014, 28(7): 497-502.
Peng LI, Jinglong LI, Li LIANG, Jiangtao XIONG, Fusheng ZHANG, Jinwen QIAN. Morphological Characteristics and Mechanical Property of Continuous Drive Friction Welded Joints of Carbon Steel 45(GB)[J]. Chinese Journal of Materials Research, 2014, 28(7): 497-502.

全文: PDF(2944 KB)   HTML
摘要: 

通过引入接头形貌特征参量表征因子(取粘径比α=粘合区长度/原始直径, 比例因子η=外缘热影响区宽度/中心热影响区宽度), 研究了摩擦压力和摩擦时间等工艺参数对45号钢连续驱动摩擦焊接头的形貌及力学性能的影响。结果表明, 随着摩擦压力的升高粘径比α先升高后降低, 而比例因子η持续升高;当摩擦压力为60 MPa时, 随着摩擦时间的延长粘径比α不断增大, 而比例因子η则不断减小。当综合因子δ (δ=η/α)为1.15-1.31时摩擦焊接头的热输入量适中, 接头的力学性能良好, 可作为45号钢连续驱动摩擦焊接头良好焊接工艺规范的制定原则。

关键词 金属材料特征形貌连续驱动摩擦焊45号钢力学性能    
Abstract

The influence of friction pressure and time on morphological characteristics and mechanical property of the continuous drive friction welded joints of medium carbon steel 45(GB) was investigated in terms of the newly proposed two character factors, i.e. sticky length to diameter ratio α = length of welded zone / original diameter and scaling factor η = width of outer heat affected zone / width of center heat affected zone. The results show that, with the increase of friction pressure the sticky length to diameter ratio α increases firstly and then decreases, while the scaling factor η increases all along. However, by a friction pressure 60 MPa, the sticky length to diameter ratio α increases and the scaling factor η decreases continuously with the increasing friction time. When the integrative factor δ (δ=η/α) falls in a range 1.15-1.31, the mechanical property of joints is good because the heat input is moderate, which therefore can be used as a criterion of selection of welding parameters for gaining good performance of the continuous drive friction welded joints of the steel 45(GB).

Key wordsmetallic materials    morphological characteristic    continuous drive friction welding    medium carbon steel 45(GB)    mechanical property
收稿日期: 2013-12-10     
基金资助:* 国家自然科学基金51071123, 陕西省科技统筹创新工程计划项目2012HBSZS021和西北工业大学基础研究基金JC2012022项目资助。
Friction pressure Pf / MPa Friction time tf / s Upset pressure Pu / MPa Upset time tu / s
15 2 15 5
30 30
90 90
60 1 60
2
3
表1  实验用焊接工艺参数
图1  焊缝形貌特征参量示意图
图2  摩擦时间2 s不同摩擦压力条件下接头宏观形貌和轴向缩短量的变化
图3  摩擦时间2 s不同摩擦压力条件下接头的显微形貌
Pf/MPa H/mm Lo/mm Lc/mm α η
15 16.27 4.23 3.71 1.16 1.14
30 16.39 4.05 3.02 1.17 1.34
60 16.58 3.83 2.81 1.19 1.37
90 15.73 3.81 2.42 1.12 1.57
表2  摩擦时间2 s不同摩擦压力条件下接头的形貌特征参量
图4  摩擦时间2 s条件下粘径比α和比例因子η随摩擦压力的变化
图5  摩擦压力60 MPa条件下接头宏观形貌和轴向缩短量随时间的变化
图6  摩擦压力60 MPa不同摩擦时间条件下试样接头的显微形貌
tf / s H / mm Lo / mm Lc / mm α η
1 16.10 3.37 2.33 1.15 1.45
2 16.66 3.84 2.81 1.19 1.37
3 16.94 4.32 3.20 1.21 1.35
表3  摩擦压力60 MPa不同摩擦时间条件下接头的形貌特征参量
图7  摩擦压力60 MPa条件下粘径比α和比例因子η随摩擦时间的变化
图8  摩擦时间为2 s摩擦压力不同和摩擦压力60 MPa摩擦时间不同条件下接头的抗拉强度
图9  抗拉强度随粘径比α和比例因子η的变化
图10  抗拉强度随综合因子δ的变化
1 LIU Jun,The developments and applications of friction welding in America, Welding Technology, 4, 46(1995)
1 (刘 军, 摩擦焊在美国的应用与发展, 焊接技术, 4, 46(1995))
2 LIANG Hai,ZHANG Zheng, Application of inertia friction welding on aircraft engines, Journal of Materials Engineering, (2), 48(1992)
2 (梁 海, 张 峥, 惯性摩擦焊在航空发动机上的应用, 材料工程, (2), 48(1992)
3 LIU Xuemei,ZHANG Yanhua, ZOU Zengda, WANG Xinhong, QU Shiyao, Developments and applications of the advanced friction welding technologies, Hot Working Technology, 35(7), 49(2006)
3 (刘雪梅, 张彦华, 邹增大, 王新洪, 曲仕尧, 先进摩擦焊接技术的开发与应用, 热加工工艺, 35(7), 49(2006))
4 V. I. Vill, Friction welding of metals,(New York, American Welding Society, trade distributor: Reinhold Pub. Co., 1962) p.33
5 B. Crossland,friction welding, Contemporary Physics, 12(6), 559(1971)
6 J. W. Qian, J. L. Li, F. Sun, J. T. Xiong, F. S. Zhang, X. Lin,An analytical model to optimize rotation speed and travel speed of friction stir welding for defect-free joint, Scripta Materialia, 68(3-4), 175(2013)
7 P. Sathiya, S. Aravindan, A. N. Haq, K. Paneerselvam,Optimization of friction welding parameters using evolutionary computational techniques, Journal of Materials Processing Technology, 209(5), 2576(2009)
8 DUAN Liyu,LIU Jinhe, DU Suigeng, Developments of physics research on the friction welding, Journal of Northwestern Polytechnical University, 11(S1), 9(1993)
8 (段立宇, 刘金合, 杜随更, 摩擦焊接物理研究进展, 西北工业大学学报, 11(S1), 9(1993))
9 M. Ahin, H. E. Akata,Joining with friction welding of plastically deformed steel, Journal of Materials Processing Technology, 142(1), 239(2003)
10 G. M. Reddy, K. S. Rao,Microstructure and mechanical properties of similar and dissimilar stainless steel electron beam and friction welds, International Journal of Advance Manufacture Technology, 45(9), 875(2009)
11 M. B. Uday, M. N. Ahmad Fauzi, H. Zuhailawati, A. B. Ismail,Advances in friction welding process: a review, Science and Technology of Welding and Joining, 15(7), 534(2010)
12 ASM International, ASM Metals Handbook Volume 6: Welding, Brazing and Soldering,(USA, The Materials Information Company, 1992) p.509
13 R. H. Khalid, R. G. Janaki, G. P. Phanikumar, K. P. Rao,Microstructure and tensile properties of friction welded aluminum alloy AA7075-T6, Materials and Design, 31(5), 2375(2010)
14 W. Y. Li, F. F. Wang,Modeling of continuous drive friction welding of mild, Materials Science and Engineering A, 3(11), 1(2011)
15 CHENG Zhunian, The Chinese Welding Engineer Handbook, The second edition (Beijing, Machinery Industry Press, 2010) p.671
15 (陈祝年, 焊接工程师手册(第二版), (北京: 机械工业出版社, 2010) p.671)
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[12] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[13] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[14] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[15] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.