Please wait a minute...
材料研究学报  2014, Vol. 28 Issue (4): 255-261    DOI: 10.11901/1005.3093.2013.616
  本期目录 | 过刊浏览 |
相对运动速度对柔性摩擦辅助电沉积镍镀层结构的影响*
吕镖1,2,胡振峰3(),汪笑鹤2,徐滨士2
1. 东北大学 材料与冶金学院 沈阳 110819
2. 装甲兵工程学院 再制造技术国防科技重点实验室 北京 100072
3. 装甲兵工程学院 机械产品再制造国家工程研究中心 北京 100072
Effect of Relative Moving Speed on Microstructure of Flexible Friction Assisted Electrodeposited Ni Coating
Biao LV1,2,Zhenfeng HU3,**(),Xiaohe WANG2,Binshi XU2
1. School of Materials and Metallurgy, Northeastern University, Shenyang 110819
2. National Key Laboratory for Remanufacturing, Academy of Armored Forces Engineering, Beijing 100072
3. National Engineering Research Center of Mechanical Products Remanufacturing, Academy of Armored Forces Engineering, Beijing 100072
引用本文:

吕镖,胡振峰,汪笑鹤,徐滨士. 相对运动速度对柔性摩擦辅助电沉积镍镀层结构的影响*[J]. 材料研究学报, 2014, 28(4): 255-261.
Biao LV, Zhenfeng HU, Xiaohe WANG, Binshi XU. Effect of Relative Moving Speed on Microstructure of Flexible Friction Assisted Electrodeposited Ni Coating[J]. Chinese Journal of Materials Research, 2014, 28(4): 255-261.

全文: PDF(4817 KB)   HTML
摘要: 

在相对运动速度不同的条件下, 采用新型的柔性摩擦辅助电沉积技术在不含任何添加剂的Watts镀液中制备镍镀层, 用SEM、AFM、XRD、TEM、X射线应力衍射仪以及硬度计等手段分别对镀层的形貌、结构、残余应力和硬度进行了表征。结果表明: 相对运动速度对镍镀层的组织结构具有重要影响。相对运动速度在4.8-14.4 m/min范围内, 电沉积的镍镀层均为面心立方结构, 并呈现强(311)晶面择优取向; 随着相对运动速度的增加, 镀层表面的针状镍逐渐变得均匀、细小和致密, 拉应力先降低后增大, 而硬度从406 HV增加到471 HV。当相对运动速度为12 m/min时, 镍镀层的平均晶粒尺寸约为100 nm, 具有较高的硬度460 HV和最低的拉应力约100 MPa。

关键词 金属材料相对运动速度柔性摩擦电沉积纳米晶镍组织结构    
Abstract

Ni coatings were prepared by a novel flexible friction assisted electroplating technology from an additive-free Watts bath at different relative moving speed. The morphology, microstructure, residual stress and microhardness of deposits were characterized by SEM, AFM, XRD, TEM, X-ray stress tester and microhardness tester, respectively. The results show that relative moving speed has important effect on the microstructure of Ni coating. At a relative moving speed range of 4.8-14.4 m/min, electrodeposited Ni coatings have face center cubic crystallography structure with a strong preferred orientation of (311). With the increase of the relative moving speed, the needle-like Ni crystallites gradually becomes uniformity, fine and compact on the surface of coatings; Tensile stress of the coatings firstly decrease then increase, but the microhardness gradually increase from 406 HV to 471 HV. When the relative moving speed achieves 12 m/min, the electrodeposited Ni coating shows much higher microhardness of 460 HV, a lowest tensile stress of about 100 MPa, and the average grain size of about 100 nm.

Key wordsmetallic materials    relative moving speed    flexible friction    electrodeposition    nanocrystalline Ni    microstructure
收稿日期: 2013-08-25     
基金资助:* 国家自然科学基金51005244 和国家重点基础研究发展计划2011CB013403 资助项目。
图1  柔性摩擦辅助电沉积装置的示意图
图2  相对运动速度对柔性摩擦辅助电沉积镍镀层表面形貌的影响
图3  相对运动速度为12 m/min时柔性摩擦辅助电沉积镍镀层的截面形貌
图4  相对运动速度为12 m/min时柔性摩擦辅助电沉积镍镀层的AFM形貌
图5  不同相对运动速度下柔性摩擦辅助电沉积镍镀层的XRD谱及其织构系数
图6  相对运动速度为12 m/min时柔性摩擦辅助电沉积镍镀层的明场、暗场TEM像和选区电子衍射
图7  相对运动速度对柔性摩擦辅助电沉积镍镀层残余应力和硬度的影响
1 A. Robertson, U. Erb, G. Palumbo,Practical applications for electrodeposited nanocrystalline materials, Nanostructured Materials, 12, 1035(1999)
2 S. C. Tjong,Haydn Chen, Nanocrystalline materials and coatings, Materials Science and Engineering R, 45, 1(2004)
3 ZHENG Liangfu,PENG Xiao, WANG Fuhui, Effect of pulse period and saccharin additive on microstructure of Ni electrodeposits, Chinese Journal of Materials Research, 24(5), 501(2010)
3 (郑良福, 彭 晓, 王福会, 脉冲周期和糖精添加剂对电沉积Ni镀层微观结构的影响, 材料研究学报, 24(5), 501(2010))
4 M. M. A. Imran,Structural and magnetic properties of electrodeposited Ni nanowires, Journal of Alloys and Compounds, 455, 17(2008)
5 HONG Chunfu,DAI Pinqiang, KE Xuebiao, Corrosion characteristic of nanocrystalline nickel prepared by pulse electrodeposition, Rare Metal Materials and Engineering, 36(1), 130(2007)
5 (洪春福, 戴品强, 柯学标, 脉冲电沉积纳米晶体镍腐蚀特性的研究, 稀有金属材料与工程, 36(1), 130(2007))
6 M. Metiko-Hukovi, Z. Gruba?, N. Radi, A. Tonejc,Sputter deposited nanocrystalline Ni and Ni-W films as catalysts for hydrogen evolution, Journal of Molecular Catalysis A: Chemical, 249, 172(2006)
7 X. C. Liu, H. W. Zhang, K. Lu,Strain-induced ultrahard and ultrastable nanolaminated structure in nickel, Science, 342, 337(2013)
8 E. Moti, M. H. Shariat, M.E. Bahrololoom,Electrodeposition of nanocrystalline nickel by using rotating cylindrical electrodes, Materials Chemistry and Physics, 111, 469(2008)
9 C. K. Chung, W. T. Chang, C. F. Chen, M. W. Liao,Effect of temperature on the evolution of diffusivity, microstructure and hardness of nanocrystalline nickel films electrodeposited at low temperatures, Materials Letters, 65, 416(2011)
10 A. M. Rashidi, A. Amadeh,The effect of saccharin addition and bath temperature on the grain size of nanocrystalline nickel coatings, Surface & Coatings Technology, 204, 353(2009)
11 A. M. Rashidi, A. Amadeh,The effect of current density on the grain size of electrodeposited nanocrystalline nickel coatings, Surface & Coatings Technology, 202, 3772(2008)
12 Y. M. Wang, S. Cheng, Q. M. Wei, E. Ma, T. G. Nieh, A. Hamza,Effects of annealing and impurities on tensile properties of electrodeposited nanocrystalline Ni, Scripta Materialia, 51, 1023(2004)
13 GU Changdong,LIAN Jianshe, JIANG Qing, Layered nanostructured Ni with modulated hardness fabricated by surfactant-assistant electrodeposition, Scripta Materialia, 57, 233(2007)
14 Z. F. Zhou, Y. Pan, Y. C. Zhou, L. Yang,Growth dynamics and thermal stability of Ni nanocrystalline nanowires, Applied Surface Science, 257, 9991(2011)
15 M. J. N. V. Prasad, A. H. Chokshi,On the exothermic peak during annealing of electrodeposited nanocrystalline nickel, Scripta Materialia, 64, 544(2011)
16 G. Sharma, J. Varshney, A. C. Bidaye, J. K. Chakravartty,Grain growth characteristics and its effect on deformation behavior in nanocrystalline Ni, Materials Science and Engineering A, 539, 324(2012)
17 WU Xiaolei,MA En, Y. T. Zhu, Deformation defects in nanocrystalline nickel, J. of Mater Sci, 42, 1427(2007)
18 A. M. El-Sherik, U. Erb,Synthesis of bulk nanocrystalline nickel by pulsed electrodeposition, J. of Mater Sci, 30, 5743(1995)
19 F. Ebrahimi, Z. Ahmed,The effect of current density on properties of electrodeposited nanocrystalline nickel, Applied Electrochemistry, 33, 733(2003)
20 ZHA Quanxing, Kinetics introductory theory of electrode process, 3th ed., (Beijing, Science Press, 2002) p.311
20 (査全性, 电极过程动力学导论, 第三版, (北京, 科学出版社, 2002) p.311)
21 LIANG Zhijie,XIE Fengkuan, Rubbing spraying electroplating technology, Plating and Finishing, 21(5), 16(1999)
21 (梁志杰, 谢凤宽, 摩擦电喷镀技术, 电镀与精饰, 21(5), 16(1999))
22 NINF Zhaohui,HE Yedong, W. Gao, Mechanical attrition enhanced Ni electroplating, Surface & Coatings Technology, 202, 2139(2008)
23 ZHU ZengWei,ZHU Di, QU NingSong. Effects of simultaneous polishing on electrodeposited nanocrystalline nickel, Materials Science and Engineering A, 528, 7461(2011)
24 LIU Tiancheng,LU Zhichao, LI Deren, SUN Ke, ZHOU Shaoxiong, LU Yanping. Investigation on the microstructure and properties of electrodeposited iron-nickel alloy film with nano-structure, Functional Materials, 38(1), 140(2007)
24 (刘天成, 卢志超, 李德仁, 孙 克, 周少雄, 卢燕平, 电沉积铁镍纳米合金薄膜的结构和性能研究, 功能材料, 38(1), 140(2007))
25 M. F. De Riccardis, D. Carbone,Electrodeposition of well adherent metallic clusters on carbon substrates, Applied Surface Science, 252, 5403(2006)
26 R. T. C. Choo, J. M. Toguri, A. M. El-Sherik, U. Erb,Mass transfer and electrocrystallization analyses of nanocrystalline nickel production by pulse plating, J. of Appl. Electrochem., 25, 384(1995)
27 T. Watanabe, Nano-Plating: Microstructure control theory of plated film and data base of plated film microstructure, (Beijing, Chemical Industry Press, 2007), p.6
28 T. Watanabe,Nano-plating, Amsterdam, Elsevier Ltd, 2004, p.41, 54
29 M. Schlesinger, M. Paunovic,Modern electroplating, 5th ed., (New York: John Wiley & Sons, Inc., 2010), p.83
30 Z. S. Ma, Y. C. Zhou, S. G. Long, C. Lu,Residual stress effect on hardness and yield strength of Ni thin film, Surface & Coatings Technology, 207, 305(2012)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.