Please wait a minute...
材料研究学报  2014, Vol. 28 Issue (1): 15-22    DOI: 10.11901/1005.3093.2013.688
  本期目录 | 过刊浏览 |
17-4PH不锈钢的抗菌性能*
王帅1,2,卢志江2,3,杨春光2,沈明钢1,杨柯2()
1. 辽宁科技大学材料与冶金学院 鞍山 114051
2. 中国科学院金属研究所 沈阳 110016
3. 南京理工大学材料科学与工程学院 南京 210094
Antibacterial Performance of 17-4PH Stainless Steel
Shuai WANG1,2,Zhijiang LU2,3,Chunguang YANG2,Minggang SHEN1,Ke YANG2,**()
1. School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan 114051
2. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
3. School of Materials and Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094
引用本文:

王帅,卢志江,杨春光,沈明钢,杨柯. 17-4PH不锈钢的抗菌性能*[J]. 材料研究学报, 2014, 28(1): 15-22.
Shuai WANG, Zhijiang LU, Chunguang YANG, Minggang SHEN, Ke YANG. Antibacterial Performance of 17-4PH Stainless Steel[J]. Chinese Journal of Materials Research, 2014, 28(1): 15-22.

全文: PDF(3890 KB)   HTML
摘要: 

研究了热处理工艺对17-4PH不锈钢抗菌性能的影响。结果表明, 冷处理并在482℃时效能有效提高17-4PH不锈钢的抗菌性能和硬度, 提高时效温度使17-4PH不锈钢的杀菌率增加, 但是其硬度明显降低; 时效时间增加, 杀菌率提高, 但是硬度略有降低。冷处理促进马氏体分解, 位错密度增大, 从而促进了富Cu相的析出。17-4PH不锈钢最优的抗菌热处理工艺制度为: 1040℃固溶处理/0.5 h+液氮冷处理/0.5 h+482℃时效处理/6 h。

关键词 金属材料17-4PH钢抗菌性能富铜相冷处理硬度    
Abstract

The antibacterial performance of 17-4PH stainless steel by different heat treatments was investigated. The results show that aging at 482℃ after cryogenic treatment at liquid nitrogen can effectively improve the antibacterial rate and hardness of 17-4PH steel, and the antibacterial rate increased with the increase of both aging temperature and aging time, but the hardness declined. The cryogenic treatment can promote the decomposition of the martensite, and then the dislocation density in 17-4PH steel become larger, which could increase the Cu-rich precipitations in the steel matrix and improve the antibacterial performance of the steel. An optimal antibacterial heat treatment procedure for 17-4 PH steel is recommended as solution treatment at 1040℃/0.5 h+cryogenic treatment/0.5h+aging at 482℃/6 h.

Key wordsmetallic materials    17-4PH steel    antibacterial performance    Cu-rich precipitation    cryogenic treatment    hardness
收稿日期: 2013-09-22     
基金资助:* 国家九七三计划2012CB619101 和国家自然科学基金51371168 资助项目。
图1  17-4PH抗菌实验后的大肠杆菌菌落照片
Number Heat treatment process Antibacterial rate
a 1040℃×0.5 h solution treatment, water cooling, 482℃×4 h aging treatment,air cooling 22.11%
b 1040℃×0.5 h solution treatment, water cooling, cryogenic treatment with liquid nitrogen for 0.5 h, 482℃×4 h aging treatment, air cooling 88.15%
c 1040℃×0.5 h solution treatment, water cooling, 482℃×6 h aging treatment,air cooling 95.23%
d 1040℃×0.5 h solution treatment, water cooling, cryogenic treatment with liquid nitrogen for 0.5 h, 482℃×6 h aging treatment, air cooling 99.58%
e 1040℃×0.5 h solution treatment, water cooling, 552℃×4 h aging treatment,air cooling 95.23%
f 1040℃×0.5 h solution treatment, water cooling, cryogenic treatment with liquid nitrogen for 0.5 h, 552℃×4 h aging treatment, air cooling 99.58%
g 1040℃×0.5 h solution treatment, water cooling, 552℃×6 h aging treatment, air cooling 99.94%
h 1040℃×0.5 h solution treatment, water cooling, cryogenic treatment with liquid nitrogen for 0.5 h, 552℃×6 h aging treatment, air cooling 99.99%
表1  17-4PH的热处理工艺及处理后对大肠杆菌的杀菌率
图2  杀菌率随时效温度的变化
图3  17-4PH不锈钢的TEM形貌照片
图4  17-4PH不锈钢(552℃时效4 h)中析出相和基体的EDX能谱
Element Precipitation Matrix
Fe 72.9 76.2
Cr Ni 15.1 4.1 15.1 3.9
Cu 7.8 4.0
Nb 0.1 0.2
Total 100.0 100.0
表2  17-4PH不锈钢中析出相及基体成分
图5  不同时效时间的17-4PH 不锈钢对大肠杆菌的杀菌率
图6  冷处理对17-4PH不锈钢抗菌性能影响
图7  17-4PH不锈钢XRD谱
图8  冷处理前后17-4PH不锈钢TEM形貌照片
图9  时效温度对17-4PH不锈钢硬度的影响
图10  时效时间对17-4PH不锈钢硬度的影响
图11  冷处理对17-4PH不锈钢硬度的影响
1 NF S94-090-2005,Medico-surgical Equipment-materials for Ancillary Positioning Instruments for Surgical Instrument - Martensitic, Precipitation Hardening, Austenitic and Austeno-ferritic S94-090-2005, Medico-surgical Equipment-materials for Ancillary Positioning Instruments for Surgical Instrument - Martensitic, Precipitation Hardening, Austenitic and Austeno-ferritic Stainless Steels, 2005
2 YANG Chunguang,WANG Shuai, REN Ling, NAN Li, LU Zhijiang, YANG Ke, An copper-bearing anti-bacterial precipitation-hardening stainless steel and heat treatment processes for surgical implants, Chinese Patent, 201210551878.5
2 (杨春光, 王 帅, 任 玲, 南 黎, 卢志江, 杨 柯, 一种外科手术用沉淀硬化马氏体不锈钢及其热处理工艺, 中国专利, 201210551878.5)
3 F. Heidenau, W. Mittelmeier, R. Detsch, M. Haenle, F. Stenzel, G. Ziegler, H. Gollwitzer,Anovel antibacterial titania coating: Metal ion toxicity and in vitro surface colomization, Journal of Materials Science: Materials in Medicine, 16, 883(2005).
4 L. Ren, L. Nan, K. Yang,Study of copper precipitation behavior in a Cu-bearing austenitic antibacterial stainless steel, Materials and Design, 32, 2374(2011))
5 L. Nan, W. C. Yang, Y. Q. Liu, H. Xu, Y. Li, M. Q. Lv, K. Yang,Antibacterial mechanism of copper-bearing antibacterial stainless steel against E. Coli, Journal of Materials Science & Technology, 24(2), 197(2008)
6 LIU Yongqian,Studies on martensitic antibacterial stainless steel, PhD thesis, Institute of Metal Research, Chinese Academy of Sciences (2008)
6 (刘永前, 马氏体抗菌不锈钢的研究, 博士学位论文, 中国科学院金属研究所(2008))
7 H. Mirzadeh, A. Najafizadeh,Aging kinetics of 17-4 PH stainless steel, Materials Chemistry and Physics, 116, 119(2009)
8 C. N. Hsiao, C. S. Chiou, J. R. Yang,Aging reactions in a 17-4 PH stainless steel, Materials Chemistry and Physics, 74, 132(2002)
9 D. A. Porter, K. E. Easterling, M. Y. Sherif, translated by L. Chen and Y. N. Yu, Phase Transformation in Metals and Alloys (Beijing, Higher Education Press, 2011)p.226
9 (226)
10 S. S. Gill, J. Singh, R. Singh, H. Singh,Metallurgical principles of cryogenically treated tool steels-a review on the current state of science, International Journal of Advanced Manufacturing Technology, 54, 59(2011)
11 E. Hornbogen, R. C. Glenn,A meta1lographic study of precipitation of copper from alpha iron, Transanction of Metallurgical Society of AIME, 218, 1064(1960)
12 A. J. Vimal, A. Bensely, D. M. Lal, K. Srinivasan,Deep cryogenic treatment improves wear resistance of En 31 steel, Materials and Manufacturing Processes, 23(4), 139(2008)
13 Y. Z. Zhu, Z. M. Yin, Y. Zhou, Q. F. Lei, W. S. Fang,Effects of cryogenic treatment on mechanical properties and microstructure of Fe-Cr-Mo-Ni-C-Co alloy, Journa of Central South University of Technology, 15, 454(2008)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.