Please wait a minute...
材料研究学报  2013, Vol. 27 Issue (1): 53-59    
  研究论文 本期目录 | 过刊浏览 |
偏压和氮气流量对Ni+CrAlYSiN纳米复合涂层性能的影响*
朱丽娟 朱圣龙 王福会
(中国科学院金属研究所腐蚀与防护国家重点实验室 沈阳 110016)
Effects of Bias Voltage and Nitrogen Flow Rate on the Structure and Properties of Ni+CrAlYSiN
Nanocrystalline Composite Coatings
ZHU Lijuan** ZHU Shenglong WANG Fuhui
(State Key Lab for Corrosion and Protection, Institute of Metal Research,
Chinese Academy of Sciences, Shenyang 110016)
引用本文:

朱丽娟 朱圣龙 王福会. 偏压和氮气流量对Ni+CrAlYSiN纳米复合涂层性能的影响*[J]. 材料研究学报, 2013, 27(1): 53-59.
ZHU Lijuan** Shenglong WANG Fuhui. Effects of Bias Voltage and Nitrogen Flow Rate on the Structure and Properties of Ni+CrAlYSiN
Nanocrystalline Composite Coatings[J]. Chinese Journal of Materials Research, 2013, 27(1): 53-59.

全文: PDF(8347 KB)  
摘要: 摘要 采用真空电弧蒸镀技术在高温合金K417上制备Ni+CrAlYSiN纳米复合涂层, 用SEM, EDX, TEM等手段表征了复合涂层的形貌、成分和结构, 研究了基体负偏压和氮气流量对涂层的形貌、结构、成分和性能的影响。结果表明, 涂层主要由γ-Ni, fcc-AlN和fcc-CrN纳米晶组成; 基体偏压由-100 V增至-300 V, 熔滴的尺寸和数量均减小, 涂层中的晶粒尺寸由50 nm减小为30 nm。随着偏压的增大, 涂层中N含量下降, Ni含量增加, Cr和Al的含量先增加后减少; 涂层的沉积速率下降。随着氮气流量的增加, 涂层中的N含量增加, Ni、Cr和Al含量下降; 涂层的沉积速率先增加后减小。偏压为-300 V、氮气流量为225 mL?min-1 时, 涂层的硬度达最大值(9.80 GPa), 比NiCrAlYSi涂层的硬度提高约60%, 而耐磨性提高约30%。
关键词 材料失效与保护 偏压 氮气流量 纳米复合涂层    
Abstract:Ni+CrAlYSiN composite coatings were prepared on K417 by vacuum arc evaporation from a NiCrAlYSi target in Ar/N2 mixture. Characterization of the coatings was carried out using SEM, EDX and TEM. The results show that the composite coatings mainly consist of nanocrystalline γ-Ni, fcc-AlN and fcc-CrN. Increase of the bias from -100 V to -300 V leads to a decrease of the grain size, the number and size of droplets. With increasing bias voltage, the content of N decreased, Ni increased, and the contents of Cr and Al initially increased and then decreased; the deposition rate decreased. With increaseing the nitrogen flow rate, the content of N increased and those of Ni, Cr and Al decreased; while the deposition rate initially increased and then decreased. Comparing to the NiCrAlYSi coating, the Ni+CrAlYSiN coating with a maximum hardness about 9.80 GPa improved about 60% in hardness and 30% in wear resistance.
    
ZTFLH:  TG174  
1 G. W. GOWARD, Progress in coatings for gas turbine airfoils, Surf. Coat. Technol., 108-109, 73(1998)
2 W. Brandl, H. J. Grabke, D. Toma, J. Krüger, The oxidation behaviour of sprayed MCrAIY coatings, Surf. Coat. Technol., 86-87, 41(1996)
3 J. R. Nicholls, N. J. Simms, W. Y. Chan, H. E. Evans, Smart overlay coatings conceptand practice, Surf. Coat. Technol., 149(2-3), 236(2002)
4 K. Godlewski, E. Godlewska, The effect of chromium on the corrosion resistance of aluminide coatings on nickel and nickel-based substrates, Mater. Sci. Eng., 88, 103(1987)
5 C. S. Giggins, F. S. Pettit, Oxidation of Ni-Cr-Al alloys between 1000 oC and 1200 oC, J. Electrochem. Soc., 118(11), 1782(1971)
6 T. A. Taylor, P. N. Walsh, Thermal expansion of MCrAlY alloys, Surf. Coat. Technol., 177-178, 24(2004)
7 K. Zhang, Q. M. Wang, C. Sun, F. H. Wang, Preparation and oxidation behavior of NiCrAlYSi coating on a cobalt-base superalloy K40S, Corros. Sci., 50(6), 1707(2008)
8 K. Y. Yakovchuk, D. N. Ozeryany, G. R. Semenov, I. S. Malashenko, Breaking of metal-ceramic condensation coatings in thermal cycling, Problemy Spetzelectrometallurgii, 20(4), 62(1989)
9 J. T. Demasi-Matcin, D. K. Gupta, Protective coatings in the gas turbine engine, Surf. Coat. Technol., 68/69, 1(1994)
10 H. V. Hidalgo, F. J. B. Varela, E. F. Rico, Erosion wear and mechanical properties of plasma-sprayed nickel- and iron-based coatings subjected to service conditions in boilers, Tribol. Int., 30(9), 641(1997)
11 H. B. Guo, L. D. Sun, H. F. Li, S. K. Gong, High temperature oxidation behavior of hafnium modified NiAl bond coat in EB-PVD thermal barrier coating system, Thin Solid Films, 516(16), 5732(2008)
12 J. Sun, D. Zhao, Thermal corrosion behavior of NiCoCrAlTaY coating for a Ni base superalloy prepared by low pressure plasma spraying, Procedia Engineering., 27, 983(2012)
13 N. Czech, F. Schmits, W. Stamm, Improvement of MCrA1Y coatings by addition of rhenium, Surf. Coat. Technol., 68/69, 17(1994)
14 A. A. Abdel, M. Bahgat, M. Radwan, Nanostructured Ni-AlN composite coatings, Surf. Coat. Technol., 201(6), 2910(2006)
15 P. Karvánková, H. D. M?nnling, C. Eggs, S. Veprek, Thermal stability of ZrN-Ni and CrN-Ni superhard nanocomposite coatings, Surf. Coat. Technol., 146-147, 280(2001)
16 L. J. Zhu, S. L. Zhu, F. H. Wang, Preparation and oxidation behaviour of nanocrystalline Ni+CrAlYSiN composite coating with AlN diffusion barrier on Ni-based superalloy K417, Corros. Sci., 60, 265(2012)
17 L. J. Zhu, S. L. Zhu, F. H. Wang, Hot corrosion behavior of a Ni+CrAlYSiN composite coating in Na2SO4-25wt.% NaCl melt, Appl. Surf. Sci., doi:10.1016/j.apsusc.2012.12.012 (in press)
18 HUANG Meidong, Study on low temperature deposition of thin films by pulsed bias arc ion plating, PhD Thesis, Dalian University of Technology (2002)
(黄美东, 脉冲偏压电弧离子镀低温沉积研究, 博士学位论文, 大连理工大学 (2002))
19 HUANG Meidong, SUN Chao, LIN Guoqiang, DONG Chuang, WEN Lishi, Mechanical property of low temperature deposition TiN film by pulsed biased arc ion, Acta Metallurgica Sinica, 39(5), 516(2003)
(黄美东, 孙 超, 林国强, 董 闯, 闻立时, 脉冲偏压电弧离子低温沉积TiN硬质薄膜的力学性能, 金属学报, 39(5), 516(2003))
20 R. R. Aharonoy, M. Chhowalla, S. Dhar, R. P. Fontana, Factors affecting growth defect formation in cathodic arc evaporated coatings, Surf. Coat. Technol., 82(3), 334(1996)
21 Hui-Wen Chang, Ping-Kang Huang, Jien-Wei Yeh, Andrew Davison, Chun-Huei Tsau, Chih-Chao Yang, Influence of substrate bias, deposition temperature and post-deposition annealing on the structure and properties of multi-principal-component (AlCrMoSiTi)N coatings, Surf. Coat. Technol., 202(14), 3360(2008)
22 P. E. Van. Camp, V. E. Van.Doren, J. T. Devreese, High-pressure properties of wurtzite- and rocksalt-type aluminum nitride, Phys. Rev. B, 44(16), 9056(1991)
23 I. Gorczyca, N. E. Christensen, P. Perlin, I. Grzegory, J. M Jun, Bockowski, High pressure phase transition in aluminium nitride, Solid State Commun., 79(12), 1033(1991)
24 N. J. Archer, The plasma assisted chemical vapor deposition of TiC, TiN and TiCxN1-x, Thin Solid Films, 80(1–3), 221(1981)
25 I. W. Kim, Q. Li, L. D. Marks, S. A. Barnett, Critical thickness for transformation of epitaxially stabilized cubic AlN in superlattices, Appl. Phys. Lett., 78(7), 892(2001)
26 A. Madan, I. W. Kim, S. C. Cheng, P. Yashar, V. P. Dravid, S. A. Barnett, Stabilization of Cubic AlN in Epitaxial AlNyTiN Superlattices, Phys. Rev. Lett., 78(3), 1743(1997)
27 A. Sugishima, H. Kajioka, Y. Makino, Phase transition of pseudobinary Cr-Al-N films deposited by magnetron sputtering method, Surf. Coat. Technol., 97(1-3), 590(1997)
28 J. Lin, B. Mishra, J. J. Moore, W. D. Sproul, A study of the oxidation behavior of CrN and CrAlN thin films in air using DSC and TGA analyses, Surf. Coat. Technol., 202(14), 3272(2008)
29 J. Lin, J. J. Moore, W. C. Moerbe, M. Pinkas, B. Mishra, G. L. Doll, W.D.Sproul, Structure and properties of selected (Cr-Al-N, TiC-C, Cr-B-N) nanostructured tribological coatings, Int. J. Refract. Met. Hard Mater., 28(1), 2(2010)
30 CHEN Guofeng, LOU Hanyi, Oxidation resistance of sputtered Ni-5Cr-5Al nanocrystalline coating, The Chinese Journal of Nonferrous Metals, 10(2), 175(2000)
(陈国锋, 楼翰一, 溅射Ni-5Cr-5Al纳米晶涂层抗高温氧化性能, 中国有色金属学报, 10(2), 175(2000))
31 MA Dayan, MA Shengli, XU Kewei, S. Veprek, Tribological behavior of Ti-Si-N coatings prepared by magnetron sputtering reactive deposition, The Chinese Journal of Nonferrous Metals, 14(8), 1308(2004)
(马大衍, 马胜利, 徐可为, S.Veprek, 反应磁控溅射制备Ti-Si-N薄膜的摩擦磨损性能, 中国有色金属学报, 14(8), 1308(2004))
32 A. N. Kale, K. Ravindranath, D. C. Kothari, P. M. Raole, Tribological properties of (Ti, Al) N coatings deposited at different bias voltages using the cathodic arc technique, Surf. Coat. Technol., 145(1-3), 60(2001)
33 J. Bujaka, J. Walkowicza, J. Kusi ski, Influence of the nitrogen pressure on the structure and properties of (Ti, Al)N coatings deposited by cathodic vacuum arc PVD process, Surf. Coat. Technol., 180-181, 150(2004)
34 G. H?kansson, G. L??f, H. Ljungcrantz, I. P. Ivanov, Effects of nitrogen pressure on arc-evaporated TiN coatings, Surf. Coat. Technol., 67(1-2), 17(1994)
35 G. R. ST. Pierre, Advanced materials and coatings for energy conversion systems, Energy Convers. Mgmt, 38(10-13), 1035(1997)
36 J. Fessmann, W. Olbrich, G. Kampschulte, J. Ebberink, Cathodic arc deposition of TiN and Zr(C, N) at low substrate temperatures using a pulsed bias voltage, Mater. Sci. Eng. A, 140(7), 830(1991)
37 X. G. Wan, S. S. Zhao, Y. Yang, J. Gong, C. Sun, Effects of nitrogen pressure and pulse bias voltage on the properties of Cr–N coatings deposited by arc ion plating, Surf. Coat. Technol., 204(11), 1800(2010)
38 ZHANG Jun, ZHAO Yanhui, Multi-arc Ion Plating and Its Application (Beijing, Metallurgy Industry Publishing Company, 2007) p.208
(张 钧, 赵彦辉, 多弧离子镀技术与应用 (北京, 冶金工业出版社, 2007) p.208)
39 C. Wüstefeld, D. Rafaja, V. Klemm, C. M. Michotte. Kathrein, Effect of the aluminium content and the bias voltage on the microstructure formation in Ti1-xAlxN protective coatings grown by cathodic arc evaporation, Surf. Coat. Technol., 205(5), 1345(2010)
40 B. D. Zhu, X. Y. Zeng, Z. Y. Tao, S. G. Yang, K. Cui, Coarse cemented WC particle ceramic-metal composite coatings produced by laser cladding, Wear, 170(2), 161(1993)
[1] 高巍, 刘江南, 魏敬鹏, 要玉宏, 杨巍. TC4钛合金表面氧化亚铜掺杂微弧氧化层的结构和性能[J]. 材料研究学报, 2022, 36(6): 409-415.
[2] 杨留洋, 谭卓伟, 李同跃, 张大磊, 邢少华, 鞠虹. 利用WBEEIS测试技术对管道缺陷区动态冲刷腐蚀行为的研究[J]. 材料研究学报, 2022, 36(5): 381-391.
[3] 陈铮, 杨芳, 王成, 杜瑶, 卢壹梁, 朱圣龙, 王福会. 惰性无机填料比例和颗粒尺寸对纳米Al/Al2O3 改性有机硅涂料抗高温氧化行为的影响[J]. 材料研究学报, 2022, 36(4): 271-277.
[4] 邵思武, 郑宇亭, 安康, 黄亚博, 陈良贤, 刘金龙, 魏俊俊, 李成明. 偏压技术在金刚石薄膜制备中应用的进展[J]. 材料研究学报, 2022, 36(3): 161-174.
[5] 李玉峰, 张念飞, 刘丽爽, 赵甜甜, 高文博, 高晓辉. 含磷石墨烯的制备及复合涂层的耐蚀性能[J]. 材料研究学报, 2022, 36(12): 933-944.
[6] 陈艺文, 王成, 娄霞, 李定骏, 周科, 陈明辉, 王群昌, 朱圣龙, 王福会. 无机复合涂层对CB2铁素体耐热钢在650℃水蒸气中的防护[J]. 材料研究学报, 2021, 35(9): 675-681.
[7] 唐荣茂, 刘光明, 刘永强, 师超, 张帮彦, 田继红, 甘鸿禹. 用电化学噪声技术研究Q235钢在含氯盐模拟混凝土孔隙液中的腐蚀行为[J]. 材料研究学报, 2021, 35(7): 526-534.
[8] 张大磊, 魏恩泽, 荆赫, 杨留洋, 豆肖辉, 李同跃. 超级铁素体不锈钢表面超疏水结构的制备及其耐腐蚀性能[J]. 材料研究学报, 2021, 35(1): 7-16.
[9] 王冠一, 车欣, 张浩宇, 陈立佳. Al-5.4Zn-2.6Mg-1.4Cu合金板材的低周疲劳行为[J]. 材料研究学报, 2020, 34(9): 697-704.
[10] 黄安然, 张伟, 王学林, 尚成嘉, 范佳杰. 铁素体不锈钢在高温尿素环境中的腐蚀行为研究[J]. 材料研究学报, 2020, 34(9): 712-720.
[11] 公维炜, 杨丙坤, 陈云, 郝文魁, 王晓芳, 陈浩. 扫描电化学显微镜原位观察碳钢涂层缺陷处的交流腐蚀行为[J]. 材料研究学报, 2020, 34(7): 545-553.
[12] 郭铁明, 徐秀杰, 张延文, 宋志涛, 董志林, 金玉花. Q345q桥梁钢和Q345qNH耐候钢在模拟工业大气+除冰盐混合介质中的腐蚀行为[J]. 材料研究学报, 2020, 34(6): 434-442.
[13] 朱金阳, 谭成通, 暴飞虎, 许立宁. 一种新型含AlCr合金钢在模拟油田采出液环境下的CO2腐蚀行为[J]. 材料研究学报, 2020, 34(6): 443-451.
[14] 梁新磊, 刘茜, 王刚, 王震宇, 韩恩厚, 王帅, 易祖耀, 李娜. 氧化石墨烯改性环氧隔热涂层的耐蚀和隔热性能研究[J]. 材料研究学报, 2020, 34(5): 345-352.
[15] 王志虎,张菊梅,白力静,张国君. 水热处理对AZ31镁合金微弧氧化陶瓷层组织结构及耐蚀性的影响[J]. 材料研究学报, 2020, 34(3): 183-190.