Please wait a minute...
材料研究学报  2013, Vol. 27 Issue (1): 70-74    
  研究论文 本期目录 | 过刊浏览 |
应变速率对奥氏体不锈钢Cr17Mn6Ni4Cu2N铸坯热塑性的影响*
侯国清 朱亮 边红霞 田彦龙
(兰州理工大学 甘肃省有色金属新材料省部共建国家重点试验室 兰州 730050)
Influence of Strain Rate on Hot Ductility of Austenitic Stainless Steel Cr17Mn6Ni4Cu2N Slab
HOU Guoqing ZHU Liang** BIAN Hongxia TIAN Yanlong
(State Key Laboratory of Gansu Advanced Non-Ferrous Metal Materials, Lanzhou University of Technology, Lanzhou 730050)
引用本文:

侯国清 朱亮 边红霞 田彦龙. 应变速率对奥氏体不锈钢Cr17Mn6Ni4Cu2N铸坯热塑性的影响*[J]. 材料研究学报, 2013, 27(1): 70-74.
HOU Guoqing ZHU Liang** BIAN Hongxia TIAN Yanlong. Influence of Strain Rate on Hot Ductility of Austenitic Stainless Steel Cr17Mn6Ni4Cu2N Slab[J]. Chinese Journal of Materials Research, 2013, 27(1): 70-74.

全文: PDF(7838 KB)  
摘要: 摘要 研究了应变速率对奥氏体不锈钢Cr17Mn6Ni4Cu2N铸坯热塑性的影响。结果表明, 壳层的微观组织为δ铁素体树枝晶分布在奥氏体晶粒内部, 提高应变速率会降低其热塑性, 并使裂纹形核位置由δ铁素体树枝晶处变为奥氏体晶界处; 在芯部铁素体分布在奥氏体晶粒内部及晶界上, 提高应变速率会提高其热塑性, 且裂纹的形核位置由晶界铁素体处变为晶界铁素体和奥氏体晶界处。在高应变速率下变形, 铁素体和奥氏体的强度均提高, 并使它们之间的强度差别减小, 导致裂纹形核位置由铁素体向奥氏体晶界转移。在壳层, 较高的应变速率提高了奥氏体晶界处的应力集中, 导致其塑性降低; 在芯部, 较高的应变速率降低了铁素体处的应力集中, 使其热塑性提高。
关键词 金属材料奥氏体不锈钢高温拉伸试验应变速率热塑性    
Abstract:ABSTRACT The influence of strain rate on the hot ductility of Cr17Mn6Ni4Cu2N has been investigated by hot tensile tests. Results show that: in slab shell, the microstructure is dendrite ferrite distributing in austenite, and reduction of area (RA) decreases as strain rate increasing from 0.1 to 10 s-1, the positions of cracks nucleus are changed from δ ferrite dendrites to austenite grain boundary; in slab core, the microstructure is ferrite distributing on austenite grain boundary, and RA increases with strain rate, the positions of cracks nucleus are changed from grain boundary ferrite to the co-existence of grain boundary ferrite and austenite grain boundary. As the materials deform at higher strain rate, the strength can be improved both in austenite and ferrite, which will transfer the cracks nucleating positions from ferrite to austenite grain boundary. In shell the higher strain rate strengthens the stress concentration of austenite grain boundary, leading to the decrease of ductility; in core, the higher strain rate decreases the stress concentration of ferrite, resulting in the increase of ductility.
    
ZTFLH:  TG142  
1 F. Tehovnik, F. Vodopivec, L. Kosec, Hot ductility of austenitic stainless steel with a solidification structure, Materiali in Tehnologije, 40(4), 129(2006)
2 M. H. Parsa, M. N. Ahmadabadi, H.Shirazi, Evaluation of microstructure change and hot workability of high nickel high strength steel using wedge test, Journal of Materials Processing Technology, 199(1-3), 304(2008)
3 S. Grobeiber, S. Ilie, C. Poletti, Influence of strain rate on hot ductility of a V-Microalloyed steel slab, Steel Research International, 83(5), 445(2012)
4 H. J. McQUEEN, Elevated-temperature deformation at forming rates of 10-2 to 102 s-1, Metallurgical and Materials Transactions A, 33(2), 345(2002)
5 B. Mintz, M. Shaker, D. N. Crowther, Hot ductility of an austenitic and a ferritic stainless steel, Materials Science and Technology, 13(3), 243(1997)
6 B. Mintz, A. Cowley, R. Abushusha, Hot ductility curve of an austenitic stainless steel and importance of dynamic recrystallization in determining ductility recovery at high temperature, Materials Science and Technology, 15(10), 1179(1999)
7 N. D. Ryan, H. J. McQueen, Comparison of dynamic softening in 301, 304, 316 and 317 stainless steels, High Temperature Technology, 8(3), 185(1990)
8 N. D. Ryan, H. J. McQueen, J. J. Jonas, The deformation behavior of types 304, 316, and 317 austenitic stainless steels during hot torsion, Canadian Metallurgical Quarterly, 22(3), 369(1983)
9 H. J. McQueen, S. Yue, N. D. Ryan, Fry, Hot working characteristics of steels in austenitic state, Journal of Materials Processing Technology, 53(1-2), 293(1995)
10 S. P. Tan, Z. H. Wang, S. C. Cheng, Processing maps and hot workability of Super304H austenitic heat-resistant stainless steel, Materials Science and Engineering A, 517(1-2), 312(2009)
11 P. Bilmes, A. Gonzalez, C. Llorente, M. Solari, Effect of δ ferrite solidification morphology of austenitic stainless steel weld metal on properties of welded joints, Welding International, 10(10), 797(1996)
12 A. D. Schino, J. M. Kenny, M. G. Mecozzi, Development of high nitrogen-low nickel-18%Cr austenitic stainless steels, Journal of Materials Science, 35(19), 4803(2000)
13 J. N. Tarboton, L. M. Matthews, A. Sutcliffe, The hot workability of Cromanite, a high nitrogen austenitic stainless steel, Materials Science Forum, 318-320, 777(1999)
14 F. Czerwinski, J. Y. Cho, The edge-cracking of AISI 304 stainless steel during hot-rolling, Journal of Materials Science, 34(19), 4727(1999)
15 Z. H. Wang, W. T. Fu, S. H. Sun, Effect of preheating temperature on surface cracking of high nitrogen CrMn austenitic stainless steel, Journal of Materials Science and Techology, 26(9), 798(2010)
16 A. Pinol-Juez, A. Iza-Mendia, I. Gutierrez, δ/γ inteface boundary sliding as a mechanism for strain accommodation during hot deformation in a duplex stainless steel, Metallurigical and Materials Transaction A, 31(6), 1671(2000)
17 D. Jorge-Badiola, A. Iza-Mendia, Study by EBSD of the development of the substructure in a hot deformed 304 stainless steel, Materials Science and Engineering A, 394(1-2), 445(2005)
18 REN Jianbin, SONG Zhigang, ZHENG Wenjie, XIANG Jinzhong, Hot deformation behavior of super austenitic stainless steel 254SMo, Journal of Iron and Steel Research, 24(5), 41(2012)
(任建斌, 宋志刚, 郑文杰, 项金钟, 254SMo超级奥氏体不锈钢的热变形行为, 钢铁研究学报, 24(5), 41(2012))
19 C. M. Martin, R. N. Eric, L. B. Elliot, K. George, Hot working and recrystallization of as-cast 316L, Metallurgical and Materials Transactions A, 34(8), 1683(2003)
20 C. M. Martin, R. N. Eric, L. B. Elliot, K. George, Hot working and recrystallization of as-cast 317L, Metallurgical and Materials Transactions A, 34(12), 3021(2003)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.