Please wait a minute...
材料研究学报  2013, Vol. 27 Issue (1): 43-48    
  研究论文 本期目录 | 过刊浏览 |
Ti和Co对9Cr3W低活化耐热钢组织及性能的影响*
祖木热提 李生志 孙锋
(上海交通大学材料科学与工程学院 上海 200240)
Effect of Ti and Co on the Microstructure and Mechanical Property of Reduced Activation 9Cr3W Steel
Zumrat LI Shengzhi SUN Feng**
(School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240)
引用本文:

祖木热提 李生志 孙锋. Ti和Co对9Cr3W低活化耐热钢组织及性能的影响*[J]. 材料研究学报, 2013, 27(1): 43-48.
Zumrat LI Shengzhi SUN Feng**. Effect of Ti and Co on the Microstructure and Mechanical Property of Reduced Activation 9Cr3W Steel[J]. Chinese Journal of Materials Research, 2013, 27(1): 43-48.

全文: PDF(10202 KB)  
摘要: 用低活化元素Ti替代高活化的Co制备9Cr3W系列钢, 用金相观察、SEM观察、拉伸实验及蠕变实验等手段对其进行表征, 研究了分别加入Ti和Co对9Cr3W钢力学性能的影响。结果表明, Co和 Ti的添加促进析出相的析出, Ti使晶粒细化, 使拉伸性能和蠕变性能显著提高; Ti的添加使基体中出现少量的δ铁素体, 但选择单相奥氏体区间热处理可使其消除, 得到单一马氏体组织的低活化钢。对低活化9Cr3W钢进行Ti的微合金化, 可获得与添加1%Co相当的良好蠕变性能。
关键词 金属材料耐热钢组织析出相强化固溶强化    
Abstract:ABSTRACT The feasibility of replacing high activation element Co by low activation element Ti in reduced activated 9Cr3W steel was investigated in this paper. JMatPro phase diagram calculations were used as a theoretical guidance for preparing and heat treatment of experimental steels. The microstructure and mechanical properties of experimental steels were investigated by OM and SEM observation, tensile and creep tests. The results show that Ti and Co both can improve the creep properties of base steel 9Cr3W. The δ ferrite caused by Ti addition can be resolved into the matrix by choosing proper heat treatment parameters. 1%Co in reduced activation 9Cr3W steel can be replaced by 0.03%Ti.
    
ZTFLH:  TG113  
1 R. L. Klueh, A. T. Nelson, Ferritic/martensitic steels for next-generation reactors, Journal of Nuclear Materials, 371, 37(2007)
2 F. Abe, S. Nakazawa. Microstructural evolution and creep behavior of bainitic, martensitic, and martensite–ferrite dual phase Cr–2W steels, Material Science and Technology, 8, 1063(1992)
3 HUANG Qunying, LI Chunjing, LI Yanfen, LIU Shaojun, WU Yican, LI Jiangang, WAN Farong, JU Xin, SHAN Yiyin, YU Jinnan, ZHU Shengyun, ZHANG Pinyuan, YANG Jianfeng, HAN Fusheng, KONG Mingguang, LI Heqin, T. Muroga, T. Nagasaka, R&D status of China lowactivation martensitic steel, Chinese Journal of Nuclear Science and Engineering, 27(1), 41(2007)
(黄群英, 李春京, 李艳芬, 刘少军, 吴宜灿, 李建刚, 万发荣, 巨 新, 单以银, 郁金南, 朱升云, 张品源, 杨建锋, 韩福生, 孔明光, 李合琴, 室贺健夫, 长坂琢也, 中国低活化马氏体钢CLAM 研究进展, 核科学与工程, 27(1), 41(2007))
4 D. Rojas, J. Garcia, O. Prat, G. Sauthoffc, A. R. Kaysser-Pyzallab, 9%Cr heat resistant steels: Alloy design, microstructure evolution and creep response at 650 oC, Materials Science and Engineering A, 528, 5164(2011)
5 A. Hishinuma, A. Kohyama, R. L. Klueh, D. S. Gelles, W. Dietz, K. Ehrlich, Current status and future R&D for reduced-activation ferritic/martensitic steels, Journal of Nuclear Materials, 258-263, 193(1998)
6 LI Xinggang, YAN Qingzhi, GE Changchun, Research progress of reduced activation ferritic/martensitic steels, Journal of Iron and Steel Research, 21(6), 6(2009)
(黎兴刚, 燕青芝, 葛昌纯, 低活化铁素体/ 马氏体钢的研究进展, 钢铁研究学报, 21(6), 6(2009))
7 R. L. Klueh, D. R. Harries, High-Chromium Ferritic and Martensitic Steels for Nuclear ApplicationsBridgeport (ASTM International, 2001) p.3
8 K. Yamada, M. Igarashi, S. Muneki, F. Abe, Effect of Co addition on microstructure in high Cr ferritic steels, ISIJ International, 43(9), 1438(2003)
9 ?. Gustafson, J. ?gren, Possible effect of Co on coarsening of M23C6 carbide and Orowan stress in a 9% Cr steel, ISIJ International, 41(4), 356(2001)
10 R. Viswanathan, W. Bakker, Materials for ultrasupercritical coal power plants—boiler materials: Part 1, Journal of Materials Engineering and Performance, 10, 81(2001)
11 M. Igarashi, Y. Sawaragi, Development of 0.1C-11Cr-3W-3Co-V-Nb-
Ta-Nd-N ferritic steel for USC boilers, in: Proc. International Conf. Power Engineeering-97 (Tokyo, 1997, Vol. 2) p. 107-112
12 F. Abe, Coarsening behavior of lath and its effect on creep rates in tempered martensitic 9Cr-W steels, Material Science and Engineering A, 387-389, 565(2004)
13 H. K. D. H. Bhadeshia, Design of ferritic creep-resistant steels, ISIJ Int., 41(6), 626(2001)
14 NING Baoqun, LIU Yongchang, XU Ronglei, YANG Liushuan, Effects of thermomechanical treatment on microstructure and mechanical properties of T91 steel, Chinese Journal of Materials Research, 22(2), 191(2008)
(宁保群, 刘永长, 徐荣雷, 杨留栓, 形变热处理对T91钢组织和性能的影响, 材料研究学报, 22(2), 191(2008))
15 Yin Fengshi, Tian Liqian, Xue Bing, Jiang Xuebo, Zhou Li, Effect of titanium on second phase precipitation behavior in 9-12Cr ferritic/martensitic heat resistant steels, Rare Metals, 30, 497(2011)
16 SHI Caixia, CHENG Guoguang, LI Zhanjun, ZHAO Pei, Solidification structure refining of 430 ferrite stainless steel with TiN nucleation, Journal of Iron and Steel Research, International, 15(3), 57(2008)
17 Li Shengzhi, Zumrat Eliniyaz, Zhang Lanting, Sun Feng, Shen Yinzhong, Shan Aidang, Microstructural evolution of delta ferrite in SAVE12 steel under heat treatment and short-term creep, Material Characterizatoin, 73, 144(2012)
18 M. Taneike, K. Sawada, F. Abe, Effect of carbon concentration on precipitation behavior of M23C6 carbides and MX carbonitrides in martensitic 9Cr steel during heat treatment, Metallurgical and Materials Transactions A, 35A, 1255(2004)
19 K. Maruyama, K. Sawada, Jun-ichi Koike, Strengthening mechanisms of creep resistant tempered martensitic steel, ISIJ International, 41(6), 641(2001)
20 M. Y. Wey, T. Sakuma, T. Nishizawa, Growth of alloy carbide particles in austenite, Transactions of Japan Institute of Metals, 22, 733(1981)
21 F. Abe, Precipitate design for creep strengthening of 9% Cr tempered martensitic steel for ultra-supercritical power plants, Science and Technology of Advanced Materials, 9, 15(2008)
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.