Please wait a minute...
材料研究学报  2012, Vol. 26 Issue (6): 590-596    
  研究论文 本期目录 | 过刊浏览 |
低温熔盐电解法制备金属Ti及其动力学
廖先杰, 翟玉春, 谢宏伟, 沈洪涛, 邹祥宇
东北大学材料与冶金学院 沈阳 110819
Preparation of Ti by Direct Electrochemical Deoxidation in Low Temperature Molten Salt
LIAO Xianjie, ZHAI Yuchun, XIE Hongwei, SHEN Hongtao, ZHOU Xiangyu
The Materials and Metallurgical School of Northeastern University, Shenyang 110819
引用本文:

廖先杰 翟玉春 谢宏伟 沈洪涛 邹祥宇. 低温熔盐电解法制备金属Ti及其动力学[J]. 材料研究学报, 2012, 26(6): 590-596.
LIAO Xianjie ZHAI Yuchun XIE Hongwei SHEN Hongtao ZHOU Xiangyu. Preparation of Ti by Direct Electrochemical Deoxidation in Low Temperature Molten Salt[J]. Chinese Journal of Materials Research, 2012, 26(6): 590-596.

全文: PDF(1127 KB)  
摘要: 

采用熔盐电脱氧法, 以石墨固定的氧化物粉末为阴极, 石墨棒为阳极, NaCl--CaCl2混合熔盐为电解质, 石墨坩埚为电解槽在800℃低温熔盐中制备金属Ti。进行不同电解时间的电脱氧实验, 研究了阴极产物。分别以石墨和钼为工作电极、对电极和参比电极, 对TiO2电脱氧还原的过程进行了动力学研究, 测定了循环伏安曲线。结果表明:未烧结TiO2粉末经过40 h的恒压电解后, TiO2还原成Ti;石墨电极虽然有较宽的电化学窗口, 但是电极活性高、表面积大, 不能在高温条件下作为CV曲线电极材料使用;钼的电化学性质稳定, 是比较理想的电极材料;二氧化钛的电化学还原分四步进行: TiO2/Ti3O5, Ti3O5/Ti2O3, CaTi2O4/TiO, TiO/T, 前两步都伴随CaTiO3与CaTi2O4的自发形成。

关键词 金属材料电脱氧熔盐循环伏安    
Abstract

The method of electro–deoxidation in molten salts was adopted to to prepare Ti with unsintered TiO2 powder loaded in the graphite capsule, and the graphite crucible was used as electrolytic cell at 800oC . In this paper, different electro–deoxidation time were taken as to analyse the cathode products. During the CV experiment, the graphite and molybdenum was individually used as the work electrode material, counter electrode material and reference electrode material for the Studies on Kinetics
of TiO2 reduction and the CV curves were recorded by AutoLab PGSTAT 320 N potentiostat. Result showed that metal Ti was gotted with unsintered TiO2 powder as raw material after 40 h constant voltage electrolysis, and graphite electrode was not a good choice to used as electrode material in the CV experiment at high temperature for its high electrode activity and large surface area, although there were a wide electrochemical window potential, while the molybdenum was quite an ideal choice for its stable electrochemical properties. The TiO2 electrochemical reduction steps contain four steps: TiO2/Ti3O5, Ti3O5/Ti2O3, CaTi2O4/TiO, TiO/T during the former two steps CaTiO3 and CaTi2O4 spontaneously formed.

Key wordsmetallic materials    electric deoxidation    molten salt    cyclic voltammetry
收稿日期: 2012-02-15     
ZTFLH:  TF111  
基金资助:

国家自然科学基金50674026资助项目。

1 Shaohuai Gao H D A Z, Journal of Wuhan University of Technology–Materials Science Edition Infl uence of Abutment Material on the Stress of Implant–supported All–ceramic Single Crown, Journal of Wuhan University of Technology–Materials Science Edition, 27(1), 96(2012)

2 SONG Xiping, Titanium alloy Application Status and R&D trends in car parts, Titanium Industry Progress, (05)(2007)

(宋西平, 钛合金在汽车零件上的应用现状及研发趋势, 钛工业进展, (05)(2007))

3 Sato K, Santosh M, Titanium in quartz as a record of ultrahigh–temperature metamorphism: the granulites of Karur, southern India, Mineralogical Magazine, 71(2), 143(2007)

4 Daniel Eylon K O Y, Titanium– First Six Decades:Past, Present and Future[J]. Rare Metal Materials and Engineering, (35), 1(2006)

5 Tulugan K, Park C, Qing W, Park W, Composition design and mechanical properties of BCC Ti solid solution alloys with low Young’s modulus, Journal of Mechanical Science and Technology, 26(2), 373(2012)

6 Froes F, Titanium and other light metals: Let’s do something about cost, JOM Journal of the Minerals, Metals and Materials Society, 50(9), 15(1998)

7 Hayes F H, Advances in Titanium Extractive Metallurgy, FHH1–Tech 49/2, (April)(1984).

8 Ono K, Fundamental aspects of calciothermic process to produce titanium, Materials Transactions, 45(5), 1660(2004)

9 Suzuki R O, Aizawa M, Ono K, Calcium–deoxidation of niobium and titanium in Ca–saturated CaCl2 molten salt, Journal of Alloys and Compounds, 288(1–2), 173(1999)

10 Suzuki R O, Direct reduction processes for titanium oxide in molten salt, JOM, 59(1), 68(2007)

11 Baba M, Ono Y, Suzuki R O, Tantalum and niobium powder preparation from their oxides by calciothermic reduction in the molten CaCl2, 66(2–4), 466(2005)

12 Okabe T H, Park I, Jacob K T, Waseda Y, Production of niobium powder by electronically mediated reaction (EMR) using calcium as a reductant, Journal Of Alloys And Compounds, 288(1–2), 200(1999)

13 Le P F, Grobner O, Laurent J M, Electron stimulated molecular desorption of a non–evaporable Zr–V–Fe alloy getter at room temperature, Nuclear Instruments & Methods In Physics Research Section B–Beam Interactions With Materials And Atoms, 194(4), 434(2002)

14 Bhagat R, Jackson M, Inman D, Dashwood R, Production of Ti–W Alloys from Mixed Oxide Precursors via the FFC Cambridge Process, Journal of the electrochemical society, 156(1), E1(2009)

15 Schwandt C, Fray D J, The Electrochemical Reduction of Chromium Sesquioxide in Molten Calcium Chloride under Cathodic Potential Control , Zeitschrift f¨ur Naturforschung A, 62, 655(2007)

16 Withers J C, Loutfy R O, Thermal and electrochemical process for metal production [P]. url. 

17 Ye X S, Lu X G, Li C H, Ding W Z, Zou X L, Gao Y H, Zhong Q D, Preparation of Ti—-Fe based hydrogen storage alloy by SOM method, 36(7), 4573(2011)

18 Zou X, Lu X, Zhou Z, Li C, Ding W, Direct selective extraction of titanium silicide Ti5Si3 from multi–component Ti–bearing compounds in molten salt by an electrochemical process, 56(24), 8430(2011)

19 Cho S, Hur J, Seo C, Yoon J, Park S, Hot corrosion behavior of Ni–base alloys in a molten salt under an oxidizing atmosphere, 468(1-2), 263(2009)

20 Chen G Z, Fray D J, Farthing T W, Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride, Nature, 407(6802), 361(2000)

21 Chen C.Y., Lu X.G., Comparison of FFC and SOM processes for preparation of chromium metal, Acta Metallurgica Sinica, 44(2), 145(2008)

22 Schwandt C, Alexander D T, Fray D J, The electro–deoxidation of porous titanium dioxide precursors in molten calcium chloride under cathodic potential control, Electrochimica Acta, 54(14), 3819(2009)

23 Liao X, Xie H, Zhaiy Y, Zhang Y, Preparation of Al3Sc Intermetallic Compound by FFC Method, Journal of Materials Sciences and Technology, 25(5), 717(2009)

24 Schwandt C, Fray D J, Determination of the kinetic pathway in the electrochemical reduction of titanium dioxide in molten calcium chloride, Electrochimica Acta, 51(1), 66(2005)

25 Fray C S D J, Determination of the kinetic pathway in the electrochemical reduction of titanium dioxide in molten calcium chloride, Electrochimica Acta, 51, 66(2005)

26 Chen G, Fray D, Farthing T, Cathodic deoxygenation of the alpha case on titanium and alloys in molten calcium chloride, Metallurgical and Materials Transactions B, 32(6), 1041(2001)

27 Schwandt C, Alexander D T, Fray D J, The electro–deoxidation of porous titanium dioxide precursors in molten calcium chloride under cathodic potential control, Electrochimica Acta, 54(14), 3819(2009)

28 Fray D J, Chen G Z, Reduction of titanium and other metal oxides using electrodeoxidation, Materials Science and Technology, 20(3), 295(2004)

29 Alexander D, Schwandt C, Fray D J, Microstructural kinetics of phase transformations during electrochemical reduction of titanium dioxide in molten calcium chloride, Acta Materialia, 54(11), 2933(2006)

30 Chen G Z, Fray D J, Voltammetric studies of the oxygen–titanium binary system in molten calcium chloride, Journal Of The Electrochemical Society, 149(11), E455(2002)

31 Dring K, D R D, Inman D, Voltammetry of Titanium Dioxide in Molten Calcium Chloride at 900  , Journal of The Electrochemical Society, 152(3), E104(2005)

32 Wang S, Li Y, Reaction mechanism of direct electro–reduction of titanium dioxide in molten calcium chloride, Journal of Electroanalytical Chemistry, 571(1), 37(2004)

33 Jiang K, Hu X, Sun H, Wang D, Jin X, Ren Y, Chen G Z, Electrochemical Synthesis of LiTiO2 and LiTi2O4 in Molten LiCl, Chemistry of Materials, 16, 4324(2004)

34 Qiu G, Ma M, Wang D, Jin X, Hu X, Chen G Z, Metallic Cavity Electrodes for Investigation of Powders, Journal of The Electrochemical Society, 152(10), E328(2005)

35 Hirota K, Okabe T H, Saito F, Waseda Y, Jacob K T, Electrochemical deoxidation of RE–O (RE=Gd, Tb, Dy, Er) solid solutions, 282, 101(1999)

36 Chen G Z, Fray D J, Voltammetric Studies of the Oxygen–Titanium Binary System in Molten Calcium Chloride, Journal of The Electrochemical Society, 149(11), E455(2002)

37 Barnett R, Kilby K, Fray D, Reduction of Tantalum Pentoxide Using Graphite and Tin–Oxide–Based Anodes via the FFC–Cambridge Process, Metallurgical and Materials Transactions B, 40(2), 150(2009)

38 Antti Roine J M P B, HSC Chemistry for Windows[DB/CD]. Version 6.0 ed. Pori, Finland: Research, Outokumpu, 2006.

39 LIANG Yingjiao, CHE Yinchang, Inorganic Thermodynamic Data Sheet (Shenyang, Liaoning, China, Northeastern University Press, 1993) p.634)

(梁英教, 车荫昌,  无机物热力学数据手册 (中国辽宁沈阳, 东北大学出版社, 1993)  p.634)

40 Littlewood R, Diagrammatic Representation of the Thermodynamics of Metal–Fused Chloride Systems, Journal of The Electrochemical Society, 109(6), 525(1962)

41 Jiang K, Hu X H, Ma M, Wang D H, Qiu G H, Jin X B, Chen G Z, ”Perovskitization”–assisted electrochemical reduction of solid TiO2 in molten CaCl2, Angewandte Chemie–International Edition, 45(3), 428(2006)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.