Please wait a minute...
材料研究学报  2012, Vol. 26 Issue (1): 73-77    
  研究论文 本期目录 | 过刊浏览 |
微米螺旋碳纤维的电容特性
殷大根, 朱亚波, 杜勇, 刘晓霞, 刘章生
中国矿业大学材料科学与工程学院 徐州 221116
Electrochemical Capacitance Performance of Carbon Microcoils
YIN Dagen, ZHU Yabo, DU Yong, LIU Xiaoxia, LIU Zhangsheng
School of Materials Science and Engineering, China University of Mining and Technology, Xuzhou 221116
引用本文:

殷大根 朱亚波 杜勇 刘晓霞 刘章生. 微米螺旋碳纤维的电容特性[J]. 材料研究学报, 2012, 26(1): 73-77.
. Electrochemical Capacitance Performance of Carbon Microcoils[J]. Chin J Mater Res, 2012, 26(1): 73-77.

全文: PDF(991 KB)  
摘要: 用CVD法合成微米螺旋碳纤维(carbon microcoils, CMCs), 用硝酸和KOH等对其进行纯化和活化处理, 用扫描电镜(SEM)、光学显微镜观察其形貌, 用X--射线能谱仪分析反应后催化剂成分, 并采用恒流充放电、循环伏安、 交流阻抗等电化学方法分析CMCs超级电容器性能。结果表明, 在50 mA•g-1电流密度条件下, 初始CMCs产物的比电容为12.7 F•g-1, 纯化处理后的比电容为41.4 F•g-1, 活化处理后则达到111.1 F•g-1, 为处理前的8.75倍。表明纯化特别是活化处理使其电容性能显著提高。
关键词 无机非金属材料微螺旋碳纤维超级电容器比电容    
Abstract:Carbon microcoils (CMCs) were prepared by CVD, and then were purified and activated with nitric acid and KOH. The morphology of CMC samples with their catalyzer were characterized by means of scanning electron microscope, optical microscope and X-ray spectrometer, respectively. CMCs supercapacitors were characterized by charge-discharge, cyclic voltammetry(CV) and electrochemical impedance spectroscopy(EIS). The results show that in the current density of 50 mA·g-1, the electrochemical capacity of no-disposed CMCs, purification CMCs and activation CMCs are 12.7 F·g-1, 41.4 F·g-1 and 111.1 F·g-1 (about 8.75 times before the disposed), respectively. It can be concluded that the capacity of CMCs supercapacitors can be improved by purification and activation.
Key wordsinorganic non-metallic materials    carbon microcoils    supercapacitor    electrochemical capacity
收稿日期: 2011-11-14     
ZTFLH: 

TQ127 

 
基金资助:

国家大学生创新性实验计划和中国矿业大学创新能力提升基金2011XK07资助项目。

1 T.Hayashida, L.Pan, Y.Nakayama, Mechanical and electrical properties of carbon tubule nanocoils, Physica B, 323, 352(2002)

2 S.Motojima, X.Chen, S.Yang, M.Hasegawa, Properties and potential applications of carbon microcoils/nanocoils, Diam. Relat. Mater., 13, 1989(2004)

3 K.Yoshimura, K.Nakano, T.Miyake, Y.Hishikawa, S.Motojima, Effectiveness of carbon microcoils as a reinforcing material for a polymer matrix, Carbon, 44(2006), 2833(2006)

4 K.-T.Lau, M.Lu, K.Liao, Improved mechanical properties of coiled carbon nanotubes reinforced epoxy nanocomposites, Composites Part A, 37, 1837(2006)

5 S.Motojima, X.Chen, Preparation and characterization of carbon microcoils (CMCs), Bull. Chem. Soc. Jpn., 80(3), 449(2007)

6 WU Fayu, DU Jinhong, LIU Chenguang, LI Lixiang, CHENG Huiming, Themicrostructure and energy storage characteristics of micro-coiled carbon fibers , New Carbon Materials, 19(2), 81(2004)

(吴法宇, 杜金红, 刘辰光, 李莉香, 成会明, 螺旋炭纤维的微观结构与储能特性, 新型炭材料,  19(2), 81(2002))

7 M.J.Hanus, A.T.Harris, Synthesis, characterisation and applications of coiled carbon nanotubes, J. Nanosci. Nanotechnol., 10, 2261(2010)

8 P.Simon, Y.Gogotsi, Materials for electrochemical capacitors, Nat. Mater., 7, 845(2008)

9 Lili Zhang, X.S.Zhao, Carbon-based materials as supercapacitor electrodes, Chem. Soc. Rev., 38, 2520(2009)

10 Lili Zhang, Rui Zhou, X.S.Zhao, Graphene-based materials as supercapacitor electrodes, J. Mater. Chem., 20, 5983(2010)

11 Yan Wang, Zhiqiang Shi, Yi Huang, Yanfeng Ma, Chengyang Wang, Mingming Chen, Yongsheng Chen, Supercapacitor devices based on graphene materials, J. Phys. Chem. C, 113(30), 13103(2009)

12 WAN Chuanyun, WANG Lijun, SHEN Shaodian, ZHU Xian, Effect of synthesis routes on the performances of MnO2 for electrochemical capacitors, Acta Chim. Sin., 67(14), 1559(2009)

(万传云, 王利军, 沈绍典, 朱贤, 合成路径对超级电容器用二氧化锰性质的影响, 化学学报,  67(14), 1559(2009))

13 LI Xiaohui, LI Yunyu, GANWeiping, OU Dingbin, Recent advances of oxide electrode materials of supercapacitor, J. Guangdong Non-ferrous Met., 16(1), 62(2006)

(黎小辉, 黎运宇, 甘卫平, 欧定斌, 超级电容器氧化物电极材料的研究进展,广东有色金属学报,  16(1), 62(2006))

14 P.Sivaraman, R.K.Kushwaha, K.Shashidhara, V.R.Hande, A.P.Thakur, A.B.Samui, M.M.Khandpekar, All solid supercapacitor based on polyaniline and crosslinked sulfonated poly[ether ether ketone], Electrochim. Acta, 55, 2451(2010)

15 C.A.Amarnath, J.H.Chang, D.Kim, R.S.Mane, S.H.Han, D.Sohn, Electrochemical supercapacitor application of electroless surface polymerization of polyaniline nanostructures, Mater. Chem. Phys., 113, 14(2009)

16 J.L.Liu, M.Q.Zhou, L.Z.Fan, P.Li, X.H.Qu, Porous polyaniline exhibits highly enhanced electrochemical capacitance performance, Electrochim Acta, 55, (2010)

17 ZHANG Xiaobo, CHEN Minghai, ZHANG Xiaogang, LI Qingwen, Preparation of porous carbon nano fibers by eiectrospinning and their electrochemical capacitive behavior, Acta Phys. Chim. Sin., 26(12), 3169(2010)

(张校菠, 陈名海, 张校刚, 李清文, 静电纺丝制备多孔碳纳米纤维及其电化学电容行为, 物理化学学报,  26(12), 3169(2010))

18 JI Qianqian, GUO Peizhi, ZHAO Xiusong, Preparation of chitosan-based porous carbons and their application as electrode materials for supercapacitors, Acta Phys. Chim. Sin., 26(5), 1254(2010)

(季倩倩, 郭培志, 赵修松, 壳聚糖制备多孔炭及其在电化学超级电容器中的应用, 物理化学学报,  26(5), 1254(2010))

19 Xin Zhao, Bryan T T Chu, Belen Ballesteros, Weiliang Wang, Colin Johnston, John M Sykes, Patrick S Grant,Spray deposition of steam treated and functionalized single-walled and multi-walled carbon nanotube films for supercapacitors, Nanotechnology, 20, 065605(2009)

20 Cunjiang Yu, Charan Masarapu, Jiepeng Rong, Bingqin Wei, Hanqing Jiang, Stretchable supercapacitors based on buckled single-walled carbon nanotube macrofilms, Adv. Mater., 21, 4793(2009)

21 Lanjuan Wang, Chunzhong Li, Feng Gu, Chuanxiang Zhang, Facile flame synthesis and electrochemical properties of carbon nanocoils, Journal of Alloy and Compounds, 473, 351(2009)

22 S.Motojima, H.Iwanaga, T.Hashishin, T.Kojima, T.Tsuda, Preparation of carbon microcoils/nanocoils and ceramic microcoils and their properties, Micromechatronics and Human Science, 1(2002)

23 XU Bin, ZHANG Hao, CAO Gaoping, ZHANG Wenfeng, YANG Yusheng, Carbon materials for supercapacitors, Progress in Chemistry, 23(2/3), 605(2011)

(徐斌, 张浩, 曹高萍, 张文峰, 杨裕生, 超级电容器炭电极材料的研究, 化学进展,  23(2/3), 605(2011))

24 Yonggang Wang, Yongyao Xia, Hybrid aqueous energy storage cells using activated carbon and lithiumintercalated compounds I. The C/LiMn2O4 system, J. Electrochem. Soc, 153(2), 540(2006)

25 T.C.Girija, M.V.Sangaranarayanan, Analysis of polyaniline-based nickel electrodes for electrochemical supercapacitors, J. Power Sources, 156(2), 705(2006)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.