Please wait a minute...
材料研究学报  2012, Vol. 26 Issue (1): 55-60    
  研究论文 本期目录 | 过刊浏览 |
钢表面颗粒增强熔覆层的组织和性能
叶诚, 杜晓东, 杨皓宇
合肥工业大学材料科学与工程学院 合肥 230009
Analysis of Microstructure and Properties of Particles Reinforced Cladding Layer on the Steel Surface
YE Cheng, DU Xiaodong, YANG Haoyu
School of Material Science and Engineering, Hefei University of Technology, Hefei 230009
引用本文:

叶诚 杜晓东 杨皓宇. 钢表面颗粒增强熔覆层的组织和性能[J]. 材料研究学报, 2012, 26(1): 55-60.
, , . Analysis of Microstructure and Properties of Particles Reinforced Cladding Layer on the Steel Surface[J]. Chin J Mater Res, 2012, 26(1): 55-60.

全文: PDF(1105 KB)  
摘要: 采用预置法在45号钢表面制备WC颗粒增强熔覆层, 研究了熔覆层的组织和性能, 并与淬火态Cr12MoV(59HRC)的耐磨性能进行比较, 分析磨损机理并讨论WC颗粒的磨损现象。结果表明: 熔覆层与基材之间结合良好并形成界面反应层; 熔覆层组织分布均匀, 表面弥散分布着大量WC颗粒; 熔覆层的平均硬度比基材的高, 耐磨性是基材45号钢的18倍, 是淬火态Cr12MoV的2倍; 在磨损实验中熔覆层的增强颗粒WC出现罕见的表面磨平和脆性脱落现象。
关键词 金属材料颗粒增强熔覆层组织界面反应耐磨性能    
Abstract:The WC reinforced cladding layer was prepared on the surface of 45 steel argon-arc cladding. The microstructure and properties of cladding layer were  investigated. The wear mechanism of cladding layer and the appearance of WC reinforced particles in wear process were analyzed. The results show that the cladding layer is metallurgical bond with substrate and its structure disperses homogeneitily. There are lots of dispersing-distributed WC particles on the surface. And there is an interface reaction between WC particles and matrix. The average microhardness of the cladding layer is higher than that of substrate. The wear resistance of the cladding layer is 18 times higher than that of 45 matrix steel and is double that of the quenched Cr12MoV steel. The surface of the reinforced particles were polished rarely and spalled in wear process.
Key wordsmetallic materials    particle reinforce    cladding layer    microstructure    interface reaction    wear resistance
收稿日期: 2011-09-22     
ZTFLH: 

TG174.442

 
基金资助:

国家九七三计划2011CB013402、科技部创新基金09C26213404170和安徽省教育厅自然科学重点科研KJ2009A094资助项目。

1 A.Mortensen, I.Jin, Soliddification processing of metal matrix composites, International Materials Reviews, 37(3), 101(1992)

2 V.C.Nardone, K.W.Prewo, On the strength of discontinuous silicon carbide reinforced aluminum composites, Scripta Metallurgica, 20(1), 43(1986)

3 ZHANG Song, ZHU Jingpu, TAN Chaoxin, Laser coating of Ni based-WC alloy on 15MnV steel, Materials Science Progress, 4(2), 168(1990)

(张 松, 朱荆璞, 谭朝鑫, 激光熔敷Ni基WC合金, 材料研究进展,  4(2), 168(1990))

4 LIU Dejian, LI Liqun, LI Fuquan, CHEN Yanbinet, WCp/Fe metal matrix composites produced by laser melt injection, Surface & Coatings Technology, 202(9), 1771(2008)

5 LI Fuquan, CHEN Yanbin, LI Liqun, Microstructure and wear property of surface modification layer produced by laser melt injection WC on Q235 steel, Transactions of the China Welding Institution, 31(4), 28(2010)

(李福泉, 陈彦宾, 李俐群, Q235钢表面激光熔注WC涂层的微观组织及耐磨性, 焊接学报,  31(4), 28(2010))

6 Bertrand Ghislaine, Bertrand Pierre, Roy Priscille, Rio Catherine, Mevrel Remy, Low conductivity plasma sprayed barrier coating using hollow PSZ spheres: Correlation between thermo physical properties and microstructure, Surface & Coatings Technology, 202(10), 1994(2008)

7 ZHOU Shengfeng, HUANG Yongjun, ZENG Xiaoyan, HU Qianwu, Microstructure characteristics of Ni-based WC composite coatings by laser induction hybrid rapid cladding, Materials Science and Engineering: A, 480(1–2), 564(2008)

8 LIN Yuanching, WANG Shiwei, LIN Yuchang, Analysis of microstructure and wear performance of WC–Ti clad layers on steel, produced by gas tungsten arc welding, Surface & Coatings Technology, 200(7), 2106(2005)

9 Soner Buytoz, Microstructural properties of SiC based hardfacing on low alloy steel surface alloying, Surface & Coatings Technology, 200(12-13), 3734(2006)

10 Soner Buytoz, Mustafa Ulutan, Mustafa Yildirim, Dry sliding wear behavior of TIG welding clad WC composite coatings, Applied Surface Science, 252, 1313(2005)

11 X.H.Wang, S.L.Song, Z.D.Zou, S.Y.Qu, Fabricating TiC particles reinforced Fe-based composite coatings produced by GTAW multi-layers melting process,  Materials Science Engineering: A, 441(1–2), 60(2006)

12 ZHOU Xia, BAO Zhiyong, ZHOU Jiyang, MAO Jianzhen, Study on wear resistance of composite alloy reinforced with hard alloy grains for coal crusher, Foundry, 51(10), 603(2002)

(周 霞, 鲍志勇, 周继扬, 毛健镇, 磨煤机用硬质颗粒复合合金材料的耐磨性, 铸造,  51(10), 603(2002))
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.