Please wait a minute...
材料研究学报  2012, Vol. 26 Issue (1): 49-54    
  研究论文 本期目录 | 过刊浏览 |
银铜双金属纳米合金的制备和电催化性质
刘婧, 陈福义, 张吉晔, 樊莉红, 张金生
西北工业大学凝固技术国家重点实验室 西安 710072
Electrodeposition and Electrocatalytic Properties of Silver–Copper Bimetallic Nanoalloy
LIU Jing, CHEN Fuyi, ZHANG Jiye, FAN Lihong, ZHANG Jinsheng
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072
引用本文:

刘婧 陈福义 张吉晔 樊莉红 张金生. 银铜双金属纳米合金的制备和电催化性质[J]. 材料研究学报, 2012, 26(1): 49-54.
, , , , . Electrodeposition and Electrocatalytic Properties of Silver–Copper Bimetallic Nanoalloy[J]. Chin J Mater Res, 2012, 26(1): 49-54.

全文: PDF(1059 KB)  
摘要: 采用电沉积方法制备银铜双金属纳米合金, 用X射线衍射仪(XRD)及高分辨率透射电子显微镜(HRTEM), 扫描电子显微镜(SEM)和电化学工作站分别对样品的结构、微观形貌和电催化性质进行了表征。结果表明, 银铜双金属纳米合金电极在H2O2溶液中表现出较强的还原电流, 可以作为阴极催化剂; 随着银铜双金属纳米合金沉积电位的变负, 阴极催化作用减弱, 形貌由穗状晶向树枝晶转变; 随着铜离子浓度的提高, 阴极催化作用增强, 银铜双金属纳米合金的形貌由树枝晶向棒状晶转变。这意味着, 本文观察到了银铜双金属纳米合金的双金属电催化协同效应。
关键词 金属材料电化学沉积银铜双金属纳米合金催化性能    
Abstract:Silver–copper (Ag–Cu) bimetallic nanoalloys were prepared by electrodeposition methods and their microstructure, morphology and electrocatalytic properties were characterized by XRD, HRTEM, SEM and electrochemical workstation. The results show that the silver–copper bimetallic nanoalloy electrodes exhibit a large reduction current peak in H2O2 solutions, indicating that silver-copper bimetallic nanoalloy can be used as a cathode catalytic. The morphology of silver-copper bimetallic nanoalloys changes from spiciform crystal to dendritic crystal and the cathode catalytic performance decreases with increasing deposition potential; The morphology of the nanoalloys changes from dendritic crystal to rod-shaped crystal and the cathode catalytic performance increases with the increasing of Cu2+ concentrations. It can be concluded that the synergistic effects are observed in the electrocatalytic performance for silver-copper bimetallic nanoalloys.
Key wordsmetallic materials    electrodeposition    silver–copper bimetallic nanoalloy    catalytic performance
收稿日期: 2011-06-23     
ZTFLH: 

TG146

 
基金资助:

国家自然科学基金(50971100, 50671082), 西北工业大学基础研究基金(NPU--FFR--ZC200931), 凝固技术国家重点实验室自主研究课题(30--TP--2009), 研究生创业种子基金(Z2011002, Z2010011, Z200915)资助项目。

1 M.E.Indig, R.N.Snyder, An interesting anodic fuel (1), J. Electrochem. Soc., 109(11), 1104(1962)

2 S.C.Amendola, P.Onnerud, M.T.Kelly, P.J.Petillo, S.L.Sharp-Goldman, M.Binder, A novel high power density borohydride-air cell, J. Power Sources,  84(1), 130(1999)

3 S.M.Lee, J.H.Kim, H.H.Lee, P.S.Lee, J.Y.Lee, The Characterization of an alkaline fuel cell that uses hydrogen storage alloys, J.Electrochem. Soc.,  149(5), A603(2002)

4 WANG Yonggang, XIA Yongyao, A direct borohydride fuel cell using MnO2-catalyzed cathode and hydrogen storage alloy anode, Electrochem. Commun., 8(11), 1775(2006)

5 FENG Ruixiang, CAO Yuliang, AI Xinping, YANG Hanxi, AgNi alloy used as anodic catalyst for direct borohydride fuel cells, Acta Phys. Chim. Sin.,  23(6), 932(2007)

(冯瑞香, 曹余良, 艾新平, 杨汉西, AgNi合金作为直接硼氢化物燃料电池的阳极催化剂, 物理化学学报, 23(6), 932(2007))

6 N.A.Choudhury, R.K.Raman, S.Sampath, A.K.Shukla, An alkaline direct borohydride fuel cell with hydrogen peroxide as oxidant, J. Power Sources,  143(1), 1(2005)

7 G.H.Miley, N.Luo, J.Mather, R.Burton, G.Hawkins, L.F.Gu, E.Byrd, R.Gimlin, P.J.Shrestha, G.Benavides, J.Laystrom, D.Carroll, Direct NaBH4H2O2 fuel cells, J. Power Sources,  165(2), 509(2007)

8 R.K.Raman, N.A.Choudhury, A.K.Shukla, A 28-W portable direct borohydride--hydrogen peroxide fuel-cell stack, Electrochem. Solid State Lett., 7(12), A488(2004)

9 R.R.Bessette, J.M.Cichon, Dischert., E.G.Dow, A study of cathode catalysis for the aluminium/hydrogen peroxide semi-fuel cell, J. Power Sources,  80(1), 248(1999)

10 Russell R. Bessette, Maria G. Medeiros, Charles J. Patrissi, Craig M. Deschenes Christopher N. LaFratta, Development and characterization of a novel carbon fiber based cathode for semi-fuel cell applications, J. Power Sources,  96(1), 240(2001)

11 YANG Weiqian, YANG Shaohua, SUN Wei, SUN Gongquan, XIN Qin, Nanostructured palladium-silver coated nickel foam cathode for magnesium--hydrogen peroxide fuel cells, Electrochim. Acta,  52, 9(2006)

12 WEI Jianliang, WANG Xianyou, WANG Hong, YANG Shunyi, DAI Chunling, PEI Fu, Performance of nanosized Au particle as a cathode catalyst for direct borohydride-hydrogen peroxide fuel cell, Acta Chim. Sin.,  66(24), 2675(2009)

(魏建良, 王先友, 王宏, 杨顺毅, 戴春岭, 裴斧,纳米Au粒子作为直接硼氢化钠--过氧化氢燃料电池阴极催化剂, 化学学报,  66(24), 2675(2009))

13 YANG Weiqian, YANG Shaohua, SUN Wei, SUN Gongquan, XIN Qin, Nanostructured silver catalyzed nickel foam cathode for an aluminum--hydrogen peroxide fuel cell, J. Power Sources,  160, 1420(2006)

14 KE Xi, CUI Guofeng, SHENG Peikang, Stability of Pd--Fe alloy catalysts, Acta Phys. Chim. Sin.,  25(2), 213(2009)

(柯曦, 崔国峰, 沈培康, 钯铁合金催化剂的稳定性, 物理化学学报,  25(2), 213(2009))

15 WU Gang, Karren L. More, Christina M. Johnston, Piotr Zelenay, High-performance electrocatalysts for oxygen reduction derived from polyaniline,iron, and cobalt, Science,  332, 443(2011)

16 J.H.Sinfelt, Bimetallic Catalysts: Discovery, Concepts, and Applications (New York, Wiley, 1983) p.130

17 G.Schmid, A.Lehnert, J.O.Malm, J.O.Bovin, Ligand-stabilized bimetallic colloids identified by HRTEM and EDX, Angewandte Chemie International Edition in English,  30(7), 874(1991)

18 I.Sunagawa, Morphology of Crystals (Kluwer Acaddemic, Dordrecht, 1987) p.509

19 LI Zhongchun, CHEN Xuhong, ZHAO Xinghong, ZHAO Zhenyi, Preparation and electroca talytic properties of silver-copper bimetallic nanoalloy, Journal of Jiangsu Teachers University of Technology,  16(9), 49(2010)

(李中春, 陈旭红, 赵兴红, 赵祯怡, Ag--Cu双金属纳米粒子的制备及其电催化性质, 江苏技术师范学院学报,  16(9), 49(2010))

20 WANG Guiling, LAN Jian, CAO Dianxue, SUN Kening, Recent advance in research on direct NaBH$_{4$/H$_{2$O$_{2$ fuel cells, Journal of Chemical Industry and Engineering (China),  59(4), 805(2008)

(王贵领, 兰剑,曹殿学, 孙克宁, 直接NaBH$_{4$/H$_{2$O$_{2$燃料电池的研究进展, 化工学报, 59(4), 805(2008))

21 WU Huihuang, Application of Electrochemical Basis (Xiamen, Xiamen University Press, 2006) p.160

(吴辉煌, 应用电化学基础 (厦门, 厦门大学出版社, 2006) p.160)

22 CHANG Gang, JIANG Zucheng, PENG Tianyou, HU Bin, Preparation of high-specific-surface-area nanometer-sized alumina by sol-gel method and study on adsorption behaviors of transition metal ions on the alumina powder with icp-aes, Acta Chim. Sin.,  60(1), 100(2003)

(常钢, 江祖成, 彭天佑, 胡斌, 溶胶--凝胶法制备高比表面积的纳米氧化铝及其对过渡金属离子吸附行为的研究, 化学学报,  60(1), 100(2003))

23 FAN Youjun, ZHEN Chunhua, CHEN Shengpei, SUN Shigang, Effect of specific adsorption of anions and surface structure of Pt(111) electrode on kinetics of dissociative adsorption of ethylene glycol, Acta Phys. -Chim. Sin.,  25(5), 999(2009)

(樊友军, 甄春花, 陈声培, 孙世刚, 阴离子特性吸附和Pt(111)电极表面结构对乙二醇解离吸附动力学的影响, 物理化学学报,  25(5), 999(2009))
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.