Please wait a minute...
材料研究学报  2011, Vol. 25 Issue (5): 476-482    
  研究论文 本期目录 | 过刊浏览 |
Ta--7.5%W合金箔材的冷轧变形织构与微观结构
王珊, 汪明朴, 陈畅, 夏福中, 杨巧然
中南大学材料科学与工程学院 长沙 410083
The Microstructures and Textures of the Cold–rolled Ta–7.5%W Alloy Foils
WANG Shan, WANG Mingpu, CHEN Chang, XIA Fuzhong, YANG Qiaoran
School of Material Science and Engineering, Central South University, Changsha 410083
引用本文:

王珊 汪明朴 陈畅 夏福中 杨巧然. Ta--7.5%W合金箔材的冷轧变形织构与微观结构[J]. 材料研究学报, 2011, 25(5): 476-482.
, , , , . The Microstructures and Textures of the Cold–rolled Ta–7.5%W Alloy Foils[J]. Chin J Mater Res, 2011, 25(5): 476-482.

全文: PDF(950 KB)  
摘要: 研究了140 μm的Ta--7.5%W合金箔材在冷轧变形前后的织构和微观组织, 结果表明: 冷轧态和退火态的Ta--7.5%W合金箔材中主要形成了{001}<110>、{113}<110>、{112}<110>、{111}<110>四种织构组分; 在冷轧的Ta--7.5%W合金箔材中, 合金的{100}<110>取向和{113}<110>取向的晶粒中都形成了位错胞结构, 且在{100}<110>方向上主要为大的等轴状位错胞结构, 位错胞的平均大小在500 nm左右, 而在{111}<110>取向形成了微带组织, 这些微带互相平行, 微带之间的平均间距在200 nm左右; 微带主要由GNBs(geometrically necessary boundaries, 几何必须位错界面)和IDBs(incidental dislocation boundaries, 附生位错界面)两种位错界面结构组成, GNBs中含有一组相互平行的高密度位错, 位错之间的间距在5 nm左右。
关键词 金属材料冷轧Ta--W合金织构变形组织    
Abstract:The microstructure and texture in both the annealing and cold–rolled conditions of 140 μm Ta–7.5%W alloy foils were investigated by TEM and orientation distribution function (ODF) analysis. It is found that the main texture components of the annealing and cold–rolled Ta–7.5%W alloys are {001}<110>,  {113}<110>,  {112}<110> and {111}<110>. In the cold–rolled Ta–7.5%W alloy foils, the dislocation cell structures were formed in both {001}<110> and {113}<110> orientations. There were a lot of equiaxed cell structures with an average size of 500 nm in the grains of {001}<110> texture. The microband structures were developed in the {111}<110> grains, which are distributed parallelly in the grains with a mean space length of 200 nm. The microbands consist of GNBs and IDBs. In the GNBs, there were a set of high density parallel dislocations with the spacing of about 5 nm.
Key wordsmetallic materials    cold–rolled    Ta–W alloy    textures    deformation structures
收稿日期: 2011-06-29     
ZTFLH: 

TG146

 
基金资助:

国家高新技术研究发展计划2006AA03Z517和湖南省自然科学基金05JJ30095资助项目。

1 W.Ensinger, Ion–beam sputter coating of tantalum tube inner walls for protection against hydrogen embrittlement, Surface and Coatings Technology, 84(1), 434(1996)

2 F.Cardarlli, P.Taxil, A.Sayall, Tantalum protective thin coating techniques for the chemical process industry: Molten salts electrocoating as a new alternative, International Journal of Refractory Metals and Hard Materials, 14(5), 365(1996)

3 T.Laurila, K.Zeng, J.K.Kivilahti, J.Molarius, T.Riekkinen, I.Suni, Tantalum carbide and nitride diffusion barriers for Cu metallization, Microelectronic Engineering, 60(1), 71(2002)

4 S.Li, H.S.Park, M.H.Liang, T.H.Yip, O.Prabhakar, Effects of Cu diffusion behaviors on electronic property of Cu/Ta/SiO2/ Si structure, Thin Solid Films, 462–463, 192(2004)

5 T.Balaji, R.Govindaiah, M.K.Sharma, Y.Purnshotan, A. Kumar, T.L.Prakash, Sintering and electrical properties of tantalum anodes for capacitor applications, Materials Letters, 56(4), 560(2002)

6 J.P.Delplanque, W.D.Cai, R.H.Rangel, E J.Lavernia, Spray atomization and deposition of tantalum alloys, Acta Materialia, 45(12), 5233(1997)

7 H.R.Z.Sandim, J.P.Martins, A.L.Pinto, A.F.Padiha, Recrystallization of oligocrystalline tantalum deformed by cold rolling, Materials Science and Engineering, 392(1), 209(2005)

8 E.Hosseini, M.Kazeminezhad, Dislocation structure and strength evolution of heavily deformed tantalum, International Journal of Refractory Metals and Hard Materials, 27(3), 605(2009)

9 Q.Z.Chen, B.J.Duggan, On cells and microbands formed in an interstitial–free steel during cold rolling at low to medium reductions, Metallurgical and Materials Transactions A, 35A(11), 3423(2004)

10 D.Dorothee, Z.Stefan, R.Dierk, Retention of the Goss orientation between microbands during cold rolling of an Fe3%Si single crystal, Acta Materialia, 55(7), 2519(2007)

11 M.Z.Quadir, B.J.Duggan, Deformation banding and recrystallization of a fibre components in heavily rolled IF steel, Acta Materialia, 52(13), 4011(2004)

12 L.L.Hsiung, On the mechanism of anomalous slip in bcc metals, Materials Science and Engineering A, 528(1), 329(2010)

13 S.N.Nasser, R.Kapoo, Deformation behavior of tantalum and a tantalum tungsten alloy, International Journal of Plasticity, 17(10), 1351(2001)

14 S.Nemat–Nasser, J.B.Isaacs, Direct measurement of isothermal flow stress of metals at elevated temperatures and high strain rates with application to Ta and Ta–W alloys, Acta Materialia, 45(3), 907(1997)

15 H.J.Bunge, Texture Analysis in Materials Science (London, Butterworths, 1982) p.47

16 Y.Y.Tse, B.J.Duggan, Orientation imaging microscopy studies of recrystallization in interstitial–free steel, Metallurgical and Materials Transactions A, 37A(3), 1055(2006)

17 C.J.Briant, D.H.Lassila, The effect of tungsten on the mechanical properties of tantalum, Transactions of the ASME, 121(2), 172(1999)

18 N.Hansen, X.Huang, G.Winther, Grain orientation, deformation microstructure and flow stress, Materials Science and Engineering A, 494(1), 61(2008)

19 Y.B.Park, D.N.Lee, G.Gottstein, The evolution of recrystallization textures in body centred cubic metals, Acta Materialia, 46(10), 3371(1998)

20 R.Srinivasan, G.B.Viswanathana, V.I.Leyvita, H.L.Frasera, Orientation effect on recovery and recrystallization of cold rolled niobium single crystals, Materials Science and Engineering, 507(1), 179(2009)

21 Z.J.Li, G.Winther, N. Hansen, Anisotropy in rolled metals induced by dislocation structure, Acta Materialia, 54(2), 401(2006)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.