Please wait a minute...
材料研究学报  2011, Vol. 25 Issue (5): 522-526    
  研究论文 本期目录 | 过刊浏览 |
Ce改性S2O2-8/Al--Zn--O固体酸的制备和催化性能
潘会1, 王君霞1,  孟大维1,2, 程明1, 王永钱1, 刘晓旸2
1.中国地质大学材料科学与化学工程学院~教育部纳米矿物材料及应用工程研究中心 武汉 430074
2.吉林大学化学学院~无机合成与制备化学国家重点实验室 长春 130012
Preparation and Catalyst Properties of S2O2-8/Al–Zn–O Solid Acid Modified by Ce
PAN Hui1,  WANG Junxia1,  MENG Dawei1,2,  CHENG Ming1, WANG Yongqian1, LIU Xiaoyang2,
1.Engineering Research Center of Nano–Geo Materials of the Ministry of Education, Faculty of Materials Science and Chemical Engineering, China University of Geosciences, Wuhan 430074
2.State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012
引用本文:

潘会 王君霞 孟大维 程明 王永钱 刘晓旸. Ce改性S2O2-8/Al--Zn--O固体酸的制备和催化性能[J]. 材料研究学报, 2011, 25(5): 522-526.
. Preparation and Catalyst Properties of S2O2-8/Al–Zn–O Solid Acid Modified by Ce[J]. Chin J Mater Res, 2011, 25(5): 522-526.

全文: PDF(979 KB)  
摘要: 采用溶胶--凝胶法合成了S2O82-/Al--Zn--Ce--O固体酸催化剂, 借助IR、XRD、TG/DSC和SEM对其结构和性能等进行了表征与分析, 研究了Ce的加入对催化合成乙酸正丁酯的催化活性和重复使用稳定性的影响。结果表明, 与S2O82-/Al--Zn--O固体酸相比, S2O82-/Al--Zn--Ce--O固体酸表现出更好的重复使用稳定性, 其重复使用5次后, 酯化率仍保持在94%以上, 而S2O2-8/Al--Zn--O固体酸重复使用4次后, 酯化率降低至61%。Ce的添加提高了固体酸的抗硫流失能力和抗聚集能力, 使其重复使用的稳定性提高。
关键词 无机非金属材料Al基固体酸改性酯化反应催化性能    
Abstract:S2O2−8 /Al–Zn–Ce–O solid acid catalysts were synthesized by sol–gel. The structures and properties of the catalyst were characterized by means of infrared spectrum (IR), X–ray powder diffraction (XRD), thermogravimetric analysis–differential scanning calorimetry (TG/DSC) and scanning electron microscopy (SEM). The catalytic activities and reusabilities for the synthesis of n–butyl acetate from acetic acid and n-butanol were investigated. Compared with S2O2−8 /Al–Zn–O solid acid catalyst, S2O2−8 /Al–Zn–Ce–O solid acid catalyst exhibited better stability with above 94% esterification efficiency even after being used repeatedly for five times.
Key wordsinorganic non-metallic materials    Al-based solid acids    modification    esterification reaction    catalytic properties
收稿日期: 2011-02-23     
ZTFLH: 

TB321

 
基金资助:

中央高校基本科研业务费专项资金CUGL09 0227资助项目。

1 J.R.Sohn, D.C.Shin, Environmentally friendly solid acid catalyst prepared by modifying TiO2 with cerium sulfate for the removal of volatile organic chemicals, Applied Catalysis B: Environmental, 77(3–4), 386(2008)

2 H.Z.Ma, J.Xiao, B.Wang, Environmentally friendly efficient coupling of n-heptane by sulfated tri-component metal oxides in slurry bubble column reactor, Journal of Hazardous Materials, 166(2–3), 860(2009)

3 G.X.Yu, X.L.Zhou, F.Liu, C.L.Li, L.F.Chen, J.A.Wang, Effect of isopropanol aging of Zr(OH)4 on n-hexane isomerization over Pt–SO2−4 /Al2O3–ZrO2, Catalysis Today, 148(1–2), 70(2009)

4 M.Y.Smirnova, G.A.Urguntsev, A.B.Ayupov, A.A.Vedyagin, G.V.Echevsky, Isobutane/butene alkylation on sulfated alumina: Influence of sulfation condition on textural, structural and catalytic properties, Applied Catalysis A: General, 344(1–2), 107(2008)

5 WANG Junxia, MENG Dawei, YAN Hui, PAN Hui, YU Meihua, HAO Zhibo, Preparation and characterization of solid acid S2O2−8 /Al–Zn–O, Journal of Functional Materials, 41(5), 800(2010)

(王君霞, 孟大维, 严  慧, 潘  会, 于梅花, 郝智波, S2O82-/Al--Zn--O固体酸的制备及表征, 功能材料,  41(5), 800(2010))

6 J.R.Sohn, S.H.Lee, J.S.Lim, New solid superacid catalyst prepared by doping ZrO2 with Ce and modifying with sulfate and its catalytic activity for acid catalysis, Catalysis Today, 116(2), 143(2006)

7 WANG Yuhong, DONG Shunxi, LU Guanzhong, Structure and catalytic properties of SO2−4 /ZrO2 catalyst modified by different rare earth compounds, Chinese Journal of Inorganic Chemistry, 23(4), 677(2007)

(王宇红, 董顺喜, 卢冠忠, 不同稀土改性SO42-/ZrO2催化剂的结构与性能表征, 无机化学学报, 23(4), 677(2007))

8 G.D.Fan, M.Shen, Z.Zhang, F.R.Jia, Preparation, characterization and catalytic properties of S2O2−8 /ZrO2–CeO2 solid superacid catalyst, Journal of Rare Earths, 27(3), 437(2009)

9 YAO Ruiping, ZHANG Mingjin, YANG Jun, YI Delian, XU Jun, DENG Feng, YUE Yong, YE Chaohui, Preparation of SO3/γ–Al2O3 solid acid catalyst and characterization of its structure and acidity, Journal of Chemical Industry and Engineering, 63(4), 269(2005)

(姚瑞平, 张铭金, 杨 俊, 易德莲, 徐 君, 邓 风, 岳 勇, 叶朝辉, SO42-/γ--Al2O3固体酸催化剂的制备、结构与酸性表征, 化工学报, 63(4), 269(2005))

10 A.L.C.Pereira, S.G.Marchetti, A.Albornoz, P.Reyes, M.Oportus, M.D.C.Rangel, Effect of iron on the properties of sulfated zirconia, Applied Catalysis A: General, 334(1–2), 187(2008)

11 M.K.Lam, K.T.Lee, A.R.Mohamed, Sulfated tin oxide as solid superacid catalyst for transesterification of waste cooking oil: An optimization study, Applied Catalysis B: Environmental, 93(1–2), 134(2009)

12 K.Tanabe, M.Misono, Y.Ono, H.Hattori, ZHENG Lubin, WANG Gongwei, ZHANG Yingzhen, YING Muliang, XU Boqing, New Solid Acids and Bases: Their Catalytic Properties (Beijing, Chemical Industry Press, 1991) p.193

(田部浩三, 御园生诚, 小野嘉夫, 服部英, 郑禄彬, 王公慰, 张盈珍, 应慕良, 徐柏庆,  新固体酸和碱及其催化作用,  (北京, 化学工业出版社, 1991) p.193)

13 B.Wang, J.P.Zhu, H.Z.Ma, Desulfurization from thiophene by SO2−4 /ZrO2 catalytic oxidation at room temperature and atmospheric pressure, Journal of Hazardous Materials, 164(1), 256(2009)

14 LI Caolong, DENG Changwu, HU Xianzhi, ZI Futing, MA Yongping, Catalytic synthesis of cyclohexanone ethylene keta over solid superacid, Journal of Molecular Catalysis, 23(1), 37(2009)

(李曹龙, 邓长戊, 胡显智, 字富庭, 马永平, 钛基固体超强酸对环己酮乙二醇缩酮催化反应的特性, 分子催化, 23(1), 37(2009))

15 J.R.Sohn, W.C.Park, The roles of active sites of nickel sulfate supported on γ–Al2O3 for ethylene dimerization, Applied Catalysis A: General, 239(1–2), 269(2003)

16 G.X.Yu, X.L.Zhou, F.Liu, C.L.Li, L.F.Chen, J.A.Wang, Esterification over rare earth oxide and alumina promoted SO2−4 /ZrO2, Catalysis Today, 148(1–2), 169(2009)

17 SONG Hua, DONG Pengfei, ZHANG Xu, Effect of Al contents on the isomerization performance of solid superacid Pt–S2O2−8 /ZrO2–Al2O3, Chemical Journal of Chinese Universities, 31(7), 1426(2010)

(宋  华, 董鹏飞, 张 旭, Al含量对Pt--S2O82-/ZrO2--Al2O3型固体超强酸催化剂异构化性能的影响, 高等学校化学学报, 31(7), 1426(2010))

18 GUO Haifu, CHEN Zhisheng, HAO Xiangying, YAN Peng, Preparation and characterization of solid superacid catalyst Ce4+–SO2−4 /SnO2 prepared with microemulsion method, Journal of Molecular Catalysis, 24(4), 291(2010)

(郭海福, 陈志胜, 郝向英, 闫 鹏, 固体超强酸Ce4+--SO42-/SnO2微乳法制备与表征, 分子催化, 24(4), 291(2010))

19 WANG Yuhong, WANG Yuemin, LI Jun, Effect of vanadium modification on structure and catalytic properties of SO2−4 /ZrO2–Al2O3 solid acid catalyst, Chinese Journal of Catalysis, 29(8), 758(2008)

(王宇红, 王越慜, 李 俊, 钒改性对SO42-/ZrO2--Al2O3固体酸催化剂结构与催化性能的影响, 催化学报, 29(8), 758(2008))

20 GU Xupeng, CHEN Tongyun, WAN Yubao, CHEN Huaxue, Study on synthesis of n–butylacetate with SO2−4 /ZrO2–TiO2–La Solid Superacid as Catalyst, Petrochemical Technology, 31(5), 353(2002)

(古绪鹏, 陈同云, 万玉保, 陈华学, SO42-/ZrO2--TiO2--La固体酸催化合成乙酸正丁酯, 石油化工, 31(5), 353(2002))
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 王乾, 蒲磊, 贾彩霞, 李志歆, 李俊. 碳纤维/环氧复合材料界面改性的不均匀性[J]. 材料研究学报, 2023, 37(9): 668-674.
[3] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[4] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[5] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[6] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[7] 李林龙, 杨丽琪, 薛伟海, 高禩洋, 王旭, 段德莉, 李曙. 稀土改性GCr15钢与保持架材料间的滑动摩擦磨损[J]. 材料研究学报, 2023, 37(6): 408-416.
[8] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[9] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[11] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[12] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[13] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[14] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[15] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.