Please wait a minute...
材料研究学报  2010, Vol. 24 Issue (2): 182-186    
  研究论文 本期目录 | 过刊浏览 |
硅胶/聚苯乙烯--丙烯酸核壳结构复合粒子的制备和表征
杜丽君1; 秦伟1; 蒋斌波1; 吴文清2; 王靖岱1; 阳永荣1
1.化学工程联合国家重点实验室~浙江大学化学工程与生物工程学系 杭州 310027
2.中国石油化工股份有限公司天津分公司 天津 300271
Preparation and Characterization of Silica/Poly (Styrene–co–acrylic Acid) Core–shell Composite Particles
DU Lijun1; QIN Wei1; JIANG Binbo1; WU Wenqing2; WANG Jingdai1; YANG Yongrong1
1.State Key Laboratory of Chemical Engineering; Department of Chemical and Biochemical Engineering;
Zhejiang University; Hangzhou 310027
2. SINOPEC Tianjin Company; Tianjin 300271
引用本文:

杜丽君 秦伟 蒋斌波 吴文清 王靖岱 阳永荣. 硅胶/聚苯乙烯--丙烯酸核壳结构复合粒子的制备和表征[J]. 材料研究学报, 2010, 24(2): 182-186.
, , , , , . Preparation and Characterization of Silica/Poly (Styrene–co–acrylic Acid) Core–shell Composite Particles[J]. Chin J Mater Res, 2010, 24(2): 182-186.

全文: PDF(637 KB)  
摘要: 

以硅胶(SiO2) 和聚苯乙烯--丙烯酸(PSA)为原料制备SiO2/PSA核壳结构型复合粒子。在相转化法制备聚合物薄膜的基础上, 为避免粒子团聚提出以蒸汽方式代替传统的液滴方式, 将非溶剂缓慢而均匀地加入SiO2与PSA溶液的混合物中。采用红外光谱、扫描电子显微镜、激光粒度分析仪、热重分析、压汞仪和氮气吸附/脱附等方法对粒子的化学组成、形貌、粒径分布以及多孔结构特性作了分析和表征。结果表明, SiO2/PSA复合粒子具有核壳结构, 颗粒的分散性较好, PSA利用率几乎达到100%。聚合物溶液的浓度直接影响核壳粒子的表面形貌。与纯硅胶颗粒相比, 由于致密的PSA膜覆盖在多孔硅胶上, SiO2/PSA核壳复合粒子的孔隙率、比表面积、孔体积和平均孔径都大幅下降。

关键词 无机非金属材料  复合粒子  核壳结构  相转化法  孔结构    
Abstract

SiO2/PSA core–shell particles were prepared by silica (SiO2) coated with poly(styrene–co–acrylic acid) (PSA) membrane which was performed based on phase inversion principles. Non–solvent was introduced into the mixture of SiO2 and PSA solution by vapor phase instead of liquid phase in the traditional way, in order to avoid the aggregation of particles. The resulting core–shell particles were characterized by Fourier transfer infrared spectrometry (FTIR), scanning electron microscopy (SEM), laser scattering particle analyzer, thermogravimetric analysis, mercury injection and nitrogen adsorption/desorption isotherms. The results showed that SiO2/PSA composite particles obtained core–shell structure and the surface morphologies were regulated by the concentration of PSA solution. Compared to the SiO2 particles, the porosity, surface area, pore volume and pore diameter of SiO2/PSA core–shell composite particles significantly decreased because of the dense PSA shell on silica.

Key wordsinorganic non–metallic materials     composite particles    core–shell particles    phase inversion    pore structure
收稿日期: 2009-12-17     
基金资助:

国家自然科学基金重大项目20776124、20736011和国家高技术研究发展计划2007AA030208资助项目。

1 WU Tianbin, KE Yangchuan, WANG Yuehong, DONG Peng, The preparation of monodisperse SiO2/PS composites particles, Acta Polymerica Sinica, 2, 289(2005)
(吴天斌, 柯扬船, 王月红, 董 鹏, 单分散SiO2/PSA复合粒子的制备, 高分子学报,  2, 289(2005))
2 OU Yuchun, FANG Xiaoping, GUO Tingtai, FENG Yupeng, A new technique for preparation of rigid particle toughening and reinforcing polymer composites, Chinese Journal of Materials research, 15, 110(2001)
(欧玉春, 方晓萍, 郭庭泰, 冯宇鹏, 刚性粒子增强增韧聚合物复合材料的制备新技术, 材料研究学报,  15, 110(2001))
3 C.B.Liu, T.Tang, B.T.Huang, Preparation and application of a novel core–shell–particle–supported zirconocene catalyst, J Polym Sci, Part A: Polym Chem, 39, 2085(2001)
4 Y.Guo, X.Q.Zhang, W.M.Dong, Organic–inorganic hybrid supported zirconocene catalysts for ethylene polymerization, J. Mol. Catal. A: Chem., 237, 45(2005)
5 D.Zhang, G.X.Jin, Radical copolymerization of diiminedibromidenickel (II) functionalized olefin with styrene: synthesis of polymer–incorporated nickel (II) α–diimine catalysts for ethylene polymerization, Appl. Catal. A, 262, 13(2004)
6 S.Kaur, G.Singh, U.C.Makwana, V.K.Gupta, Immobilization of titanium tetrachloride on mixed support of MgCl2 ·xEB/poly(methyl acrylate–co–1–octene): catalyst for synthesis of broad MWD polyethylene, Catal Lett, 87, 132(2009)
7 M.Ulbricht, Advanced functional polymer membranes, Polymer, 47, 2217(2006)
8 H.Zhang, H.G.Ni, X.P.Wang, X.B.Wang, W.Zhang, Effect of chemical groups of polystyrene membrane surface on ist pervaporation performance, J. Membr. Sci., 281, 626(2006)
9 Y J Wang, Y Xiong, F Chen, G S Luo. Preparation of core–shell glass bead/polysulfone microspheres with two–step sol–gel process. J. Appl. Polym. Sci., 99, 3365(2006)
10 WANG Jingdai, DU Lijun, LI Wei, FAN Lina, JIANG Binbo, HUANG Zhengliang, YANG Yongrong, The preparation of inorganic/organic composite particles with core-shell structure, China Patent, 200910098802.X, 2009–05–18.
(王靖岱, 杜丽君, 历 伟, 范丽娜, 蒋斌波, 黄正梁, 阳永荣, 具有核壳结构的无机/有机复合载体的制备方法, 中国专利, 200910098802.X, 2009--05--18)
11 K.Zhang, W.Wu, H.Meng, K.Guo, J.F.Chen, Pickering emulsion polymerization: Preparation of  Polystyrene/nano–SiO2 composite microspheres with core–shell structure, Powder Technol., 190, 393(2009)
12 H.Y.Lee, S.P.Rwei, L.Wang, P.H.Chen, Preparation and characterization of core-shell polyaniline-polystyrene sulfonate@Fe3O4 nanoparticles, Mater. Chem. Phys., 112, 805(2008)
13 C.Stropnik, L.Germic, B.Zerjal, Morphology variety and formation mechanisms of polymeric membranes prepared by wet phase inversion, J. Appl. Polym. Sci., 61, 1821(1996)
14 H.L.Luo, J.Sheng, Y.Z.Wan, Preparation and characterization of TiO2/polystyrene core-shell nanospheres via microwave–assisted emulsion polymerization, Mater. Lett., 62, 37(2008)
15 T.J.Yao, Q.Lin, K.Zhang, D.F.Zhao, H.Lv, J.H.Zhang, B.Yang, Preparation of SiO2@polystyrene@polypyrrole sandwich composites and hollow polypyrrole capsules with movable SiO2 spheres inside, J. Colloid Interface Sci., 315, 434(2007)
16 T.H.Young, L.W.Chen, Pore formation mechanism of membranes from phase inversion process, Desalination, 103, 233(1995)

[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.