Please wait a minute...
材料研究学报  2010, Vol. 24 Issue (1): 97-102    
  研究论文 本期目录 | 过刊浏览 |
低温化学法合成单晶氧化锌纳米带
钭启升
浙江海洋学院萧山科技学院 杭州 311258
Synthesis of Single Crystalline ZnO Nanobelts by the Solution Route
DOU Qisheng
School of Xiaoshan Science and Technology; Zhejiang Ocean University; Hangzhou 311258
引用本文:

钭启升. 低温化学法合成单晶氧化锌纳米带[J]. 材料研究学报, 2010, 24(1): 97-102.
. Synthesis of Single Crystalline ZnO Nanobelts by the Solution Route[J]. Chin J Mater Res, 2010, 24(1): 97-102.

全文: PDF(881 KB)  
摘要: 

用低温化学溶液法在100℃制备了非层状结构的单晶ZnO纳米带。在反应初期先形成层状结构的碱式醋酸锌(Zn(OH)2-x(CH3COO)x n H2O)前驱体, 然后在水热条件下使其转化成单晶ZnO纳米带。 用透射电子显微镜(TEM)、场发射扫描电子显微镜(FESEM)、X射线衍射(XRD)、高分辨透射电子显微镜(HRTEM)和荧光光谱(PL)对ZnO纳米带的形态、结构和光学性质进行了表征。 结果表明, 在上述反应中醋酸根阴离子和弱有机碱六次甲基四胺(HMT)对前驱体和ZnO纳米带的形成起了关键作用。

关键词 无机非金属材料  氧化锌  纳米带 化学溶液法 非层状氧化物    
Abstract

Single-crystalline ZnO nanobelts with non-layered structure were synthesized by the solution route at 100   based on the transformation of the layered precursor (Zn(OH)2−x(CH3COO)x n H2O). The morphology, structure and optical property of the ZnO nanobelts were characterized by transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), X-ray powder diffraction (XRD), high-resolution transmission electron microscopy (HRTEM) and photoluminescence (PL), respectively. It is indicated that the acetate anion and the weak organic alkali hexamethylenetetramine (HMT) play the critical role in the formation of the layered precursors at the beginning of the process.

Key wordsinorganic non-metallic materials    ZnO    nanobelts    chemical solution approach    nonlayered oxide Oxides
收稿日期: 2009-03-11     
基金资助:

浙江省教育厅科研资助项目~Y200908283。

1 Z.W.Pan, Z.R.Dai, Z.L.Wang, Nanobelts of semiconducting oxides, Science, 291(5510), 1947(2001) 2 X.Y.Kong, Z.L.Wang, Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts, Nano Lett., 3(12), 1625(2003) 3 P.X.Gao, Y.Ding, W.J.Mai, W.L.Hughes, C.S.Lao, Z.L.Wang, Conversion of zinc oxide nanobelts into superlattice-structured nanohelices, Science, 309(5741), 1700(2005) 4 C.Ma, D.Moore, J.Li, Z.L.Wang, Nanobelts, nanocombs, and nanowindmills of wurtzite zns, Adv. Mater., 15(3), 228(2003) 5 M.S.Hu, W.M.Wang, T.T.Chen, L.S.Hong, C.W.Chen, C.C.Chen, Y.F.Chen, K.H.Chen, L.C.Chen, Sharp infrared emission from single-crystalline indium nitride nanobelts prepared using guided-stream thermal chemical vapor deposition, Adv. Funct. Mater., 16(4), 537(2006) 6 L.G.Zhang, H.Jin,W.Y.Yang, Z.P.Xie, H.Z.Miao, L.N.An, Optical properties of single-crystalline α–Si3N4 nanobelts, Appl. Phys. Lett., 86, 061908(2005) 7 M.S.Mo, J.H.Zeng, X.M.Liu, W.C.Yu, S.Y.Zhang, Y.T.Qian, Controlled hydrothermal synthesis of thin single-crystal tellurium nanobelts and nanotubes, Adv. Mater., 14(22), 1658(2002) 8 Y.G.Sun, B.Mayer, Y.N.Xia, Transformation of silver nanospheres into nanobelts and triangular nanoplates through a thermal process, Nano Lett., 3(5), 675(2003) 9 Q.Y.Lu, F.Gao, S.Komarneni, Cellulose-directed growth of selenium nanobelts in solution, Chem. Mater., 18(1), 159(2006) 10 M.B.Sigman, B.A.Korgel, Strongly birefringent Pb3O2Cl2 nanobelts, J. Am. Chem. Soc., 127(28), 10089(2005) 11 J.G.Yu, J.C.Yu, W.K.Ho, L.Wu, X.C.Wang, A simple and general method for the synthesis of multicomponent Na2V6O16·3H2O single-crystal nanobelts, J. Am. Chem. Soc., 126(11), 3422(2004) 12 J.L.Zhang, J.M.Du, B.X.Han, Z.M.Liu, B.Jiang, Z.F.Zhang, Sonochemical formation of single-crystalline gold nanobelts, Angew. Chem. Int. Ed., 45(7), 1116(2006) 13 P.J.Li, Z.M.Liao, X.Z.Zhang, X.J.Zhang, H.C.Zhu, J.Y.Gao, K.Laurent, Y.L.Wang, N.Wang, D.P.Yu, Electrical and photoresponse properties of an intramolecular p-n homojunction in single phosphorus-doped ZnO nanowires, Nano Letters, 9(7), 2513(2009) 14 M.Huang, S.Mao, H.Feick, H.Yan, Y.Wu, H.Kind, E.Weber, R.Russo, P.Yang, Room-temperature ultraviolet nanowire nanolasers, Science, 292(5523), 1897(2001) 15 F.Hu, Y.F.Gao, S.Singamaneni, V.V.Tsukruk, Z.L.Wang, Converse piezoelectric effect induced transverse deflection of a free-standing ZnO microbelt, Nano Letters, 9(7), 2661(2009) 16 Y.Yang, A.Wolcott, G.M.Wang, A.Sobo, R.C.Fitzmorris, F.Qian, J.Z.Zhang, Y.Li, Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting, Nano Letters, 9(6), 2331(2009) 17 Y.Zhang, H.J.Zhou, S.W.Liu, Z.R.Tian, M.Xiao, Secondharmonic whispering-gallery modes in ZnO nanotetrapod, Nano Letters, 9(5), 2109(2009) 18 Z.H.Jing, J.H.Zhan, Fabrication and gas-sensing properties of porous ZnO nanoplates, Adv. Mater., 20(23), 4547(2008) 19 S.S.Kwon, W.K.Hong, G.H.Jo, J.S.Maeng, T.W.Kim, S.H.Song, T.Lee, Piezoelectric effect on the electronic transport characteristics of ZnO nanowire field-effect transistors on bent flexible substrates, Adv. Mater., 20(23), 4557(2008) 20 Z.L.Wang, Towards self-powered nanosystems: from nanogenerators to nanopiezotronics, Adv. Funct. Mater., 18(22), 3553(2008) 21 T.Voss, G.T.Svacha, E.Mazur, S.Muller, C.Ronning, D.Konjhodzic, F.Marlow, High-order waveguide modes in ZnO nanowires, Nano Letters, 7(12), 3675 (2007) 22 D.D.Lin, H.Wu, W.Pan, Photoswitches and memories assembled by Eelectrospinning aluminum-doped Zinc Oxide single nanowires, Adv. Mater., 19(22), 3968 (2007) 23 X.Y.Kong, Y.Ding, R.S.Yang, Z.L.Wang, Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts, Science, 303(5662), 1348(2004) 24 J.Y.Lao, J.Y.Huang, D.Z.Wang, Z.F.Ren, ZnO nanobridges and nanonails, Nano Lett., 3(2), 235(2003) 25 J.Y.Lao, J.Y.Huang, D.Z.Wang, Z.F.Ren, Hierarchical ZnO nanostructures, Nano Lett., 2(11), 1287(2002) 26 H.Zhang, D.Yang, Y.Ji, X.Ma, J.Xu, D.Que, Low temperature synthesis of flowerlike ZnO nanostructures by cetyltrimethylammonium bromide-assisted hydrothermal process, J. Phys. Chem. B, 108(13), 3955(2004) 27 C.H.Liu, J.A.Zapien, Y.Yao, X.M.Meng, C.S.Lee, S.S.Fan, Y.Lifshitz, S.T.Lee, High-Density, Ordered ultraviolet light-emitting ZnO nanowire arrays, Adv. Mater., 15(10), 838(2003) 28 H.Zhang, D.Yang, D.Li, X.Ma, S.Li, D.Que, Controllable growth of ZnO microcrystals by a capping-moleculeassisted hydrothermal process, Cryst. Growth Des., 5(2), 547(2005) 29 L.P.Xu, Y.L.Hu, C.Pelligra, C.H.Chen, L.Jin, H.Huang, S.Sithambaram, M.Aindow, R.Joesten, S.L.Suib, ZnO with different morphologies synthesized by solvothermal methods for enhanced photocatalytic activity, Chem. Mater., 21(13), 2875(2009) 30 J.Y.Yoo, Y.J.Hong, H.S.Jung, Y.J.Kim, C.H.Lee, J.H.Cho, Y.J.Doh, L.S.Dang, K.H.Park, G.C.Yi, Fabrication and optical characteristics of position-controlled ZnO nanotubes and ZnO/Zn0.8Mg0.2O coaxial nanotube quantum structure arrays, Adv. Funct. Mater., 19(10), 1601(2009) 31 B.Liu, H.C.Zeng, Hollow ZnO microspheres with complex nanobuilding units, Chem. Mater., 19(24), 5824(2007) 32 X.Y.Zhang, J.Y.Dai, H.C.Ong, N.Wang, H.L.W.Chan, C.L.Choy, Hydrothermal synthesis of oriented ZnO nanobelts and their temperature dependent photoluminescence, Chem. Phys. Lett., 393(1-3), 17(2004) 33 C.H.Lu, L.M.Qi, J.H.Yang, L.Tang, D.Y.Zhang, J.M.Ma, Hydrothermal growth of large-scale micropatterned arrays of ultralong ZnO nanowires and nanobelts on zinc substrate, Chem. Commun., 33, 3551(2006) 34 H.D.Yu, Z.P.Zhang, M.Y.Han, X.T.Hao, F.R.Zhu, A general low-temperature route for large-scale fabrication of highly oriented ZnO nanorod/nanotube arrays, J. Am. Chem. Soc., 127(8), 2378(2005) 35 Y.Sun, G.M.Fuge, N.A.Fox, D.J.Riley, M.N.R.Ashfold, Synthesis of aligned arrays of ultrathin ZnO nanotubes on a Si wafer coated with a thin ZnO film, Adv. Mater., 17(20), 2477(2005) 36 H.Zhang, D.Yang, X.Ma, N.Du, J.Wu, D.Que, Straight and thin ZnO nanorods: hectogram-scale synthesis at low temperature and cathodoluminescence, J. Phys. Chem. B, 110(2), 827(2006) 37 J.Joo, S.G.Kwon, J.H.Yu, T.Hyeon, Synthesis of ZnO nanocrystals with cone, hexagonal cone, and rod shapes via non-hydrolytic ester elimination sol-gel reactions, Adv. Mater., 17(15), 1873(2005) 38 F.Li, Y.Ding, P.X.Gao, X.Q.Xin, Z.L.Wang, Single-crystal hexagonal disks and rings of zno: low-temperature, largescale synthesis and growth mechanism, Angew. Chem. Int. Ed., 43(39), 5238(2004) 39 M.S.Mo, J.C.Yu, L.Z.Zhang, S.K.Li, Self-assembly of Zno nanorods and nanosheets into hollow  microhemispheres and microspheres, Adv. Mater., 17(6), 756(2005) 40 L.Poul, N.Jouini, F.Fievet, Layered hydroxide metal acetates (metal=zinc, cobalt, and nickel): elaboration via hydrolysis in polyol medium and comparative study, Chem. Mater., 12(10), 3123(2000) 41 C.L.Jiang, W.Q.Zhang, G.F.Zou, W.C.Yu, Y.T.Qian, Precursor-induced hydrothermal synthesis of flowerlike cupped-end microrod bundles of ZnO, J. Phys. Chem. B, 109(4), 1361(2005) 42 H.Zhang, D.Yang, X.Ma, Y.Ji, J.Xu, D.Que, Synthesis of flower-like ZnO nanostructures by an organic-free hydrothermal process, Nanotechnology, 15(5), 622(2004) 43 J.Zhang, L.D.Sun, J.L.Yin, H.L.Su, C.S.Liao, C.H.Yan, Control of ZnO morphology via a simple solution route, Chem. Mater., 14(10), 4172(2002) 44 K.Vanheusden, W.L.Warren, C.H.Seager, D.R.Tallant, J.A.Voigt, B.E.Gnade, Mechanisms behind green photoluminescence in ZnO phosphor powders, J. Appl. Phys., 79(10), 7983(1996)  
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.