Please wait a minute...
材料研究学报  2008, Vol. 22 Issue (3): 269-273    
  论文 本期目录 | 过刊浏览 |
Ti6Al4V合金的低温超塑性拉伸变形行为
赵文娟;丁桦;曹富荣;赵敬伟;张亚玲
东北大学材料与冶金学院
Mechanical Behavious of Ti6Al4V Alloy during Low-temperature Superplastic Deformation
;;;;
东北大学材冶学院
引用本文:

赵文娟; 丁桦; 曹富荣; 赵敬伟; 张亚玲 . Ti6Al4V合金的低温超塑性拉伸变形行为[J]. 材料研究学报, 2008, 22(3): 269-273.

全文: PDF(964 KB)  
摘要: 在700℃-850℃的温度范围内对Ti-6%Al-4%V(质量分数)合金板材进行超塑性拉伸试验,研究了应变速率为3×10-4 -5×10-3s-1条件下的拉伸变形行为. 结果表明:Ti6Al4V合金在空气中表现出良好的低温超塑性变形能力. 在800℃初始应变速率ε=5×10-4s-1条件下,延伸率达到536%. 在较低的700℃下变形(ε=5×10-4s-1), 延伸率仍然超过了300%. 在整个变形温度区间内,应变速率敏感性指数m均为0.3左右, 最大值为0.63.在850℃变形激活能与晶界自扩散激活能十分相近,表明晶界扩散控制的晶界滑动是超塑性变形的主要机制.在700-750℃, 变形激活能远大于晶界自扩散激活能, 位错运动是激活能升高的原因.在800℃变形的激活能介于两者之间, 表明随着温度的降低变形机制逐渐发生改变.
关键词 金属材料Ti6Al4V合金低温超塑性    
Abstract:In this study, superplastic tensile tests were carried out for Ti-6wt%Al-4wt%V alloy at temperatures of 700℃~850℃with initial strain rates of 3×10-4~5×10-3s-1. The tensile results show that Ti6Al4V alloy exhibit good low temperature superplasticity. The elongation of 536% was obtained at 800℃ with an initial strain rate of 5×10-4s-1, and the elongation over 300% were obtained even at a temperature of 700℃ (with an initial strain rate of 5×10-4s-1). The strain rate sensitivity values m kept about 0.3 in the whole deformation temperature range, and the maximal m value was 0.55. At the temperature range of 800~850℃, the deformation activation energy was very close to self-diffusion activation energy of grain boundary, which shows the main deformation mechanism is grain boundary sliding controlled by grain boundary diffusion. Yet, at the temperature range of 700~750℃, the deformation activation energy was much higher than the self-diffusion activation energy of grain boundary. The reason may be dynamic recrystallization and active dislocations motion.
Key wordsTi6Al4V alloy    low-temperature superplasticity    activation energy
收稿日期: 2007-08-17     
1 C.Leyens,M.Peters,Titanium and Titanium Alloys (Weiaheim,Germany,Wiley-VCH Verlag GmbH & Co. KGaA,2003)p.1
2 DING Hua,ZHANG Kaifeng,Current status and devel- opments in superplastic studies of materials,The Chinese Journal of Nonferrous Metals,14(7),1059(2004) (丁桦,张凯锋,材料超塑性研究的现状与发展,中国有色金属学报,14(7),1059(2004))
3 J.S.Kim,J.H.Kim,Y.T.Lee,C.G.Park,C.S.Lee,Mi- crostructural analysis on boundary sliding and its accom- modation mode during superplastic deformation of Ti- 6Al-4V alloy,Mater.Sci.Eng.,A263,272(1999)
4 ZENG Liying,ZHAO Yongqing,LI Qian,Study progress in low temperature superplasticity of titanium alloy,Ma- terial & Heat Treatment,35(22),61(2006) (曾立英,赵永庆,李倩,钛合金低温超塑性的研究进展,材料热处理,35(22),61(2006))
5 D.B.Shan,Y.Y.Zong,T.F.Lu,Y.Lv,Microstructural evo- lution and formation mechanism of FCC titanium hy- dride in Ti-6A1-4V-xH alloys,Journal of Alloys and Com- pounds,427,229(2007)
6 G.A.Salishchev,R.M.Galiyev,O.R.Valiakhmetov, R.V.Safullin,R.Y.Lutfullin,O.N.Senkov,F.H.Froes, O.A.Kalbyshev,Development of Ti-6Al-4V sheet with low temperature superplastic properties,Journal of Material Processing Technology,116(2-3),265(2001)
7 FANG Xiaoqiang,LI Miaoquan,LIN Yingying,Forma- tion of ultra-fine grained titanium alloy by equal channel angular pressing,Materials Review,20(10),107(2006) (方晓强,李淼泉,林莺莺,应用等通道转角挤压技术制备超细晶钛合金,材料导报,20(10),107(2006))
8 V.N.Perevezentsev,V.N.Chuvildeev,S.A.Larin,Deforma- tion micromechanisims and superplastic flow rheology in a wide strain rate range,Superplasticity in Advanced Ma- terials,(5),613(1994)
9 ZHANG Junhong,HUANG Boyun,HE Yuehui,MENG Liping,Mechanical behaviors of TiAl alloy during low temperature superplastic deformation,Chinese Journal of Nonferrous Metal,13(2),442(2003) (张俊红,黄伯云,贺跃辉,孟力平,TiAl基合金低温超塑性变形的力学行为,中国有色金属学报,13(2),442(2003))
10 E.Sato,K.Kuribayashi,Superplasticity and deformation induced grain growth,ISIJ International,33,825(1993)
11 M.Zelin,Grain growth during superplastic deformation, Interface Science,10,37(2002)
12 M.T.Cope,N.Ridley,Superplastic deformation character- istics of microduplex Ti-6Al-4V alloy,Material Science and Technology,2,140(1986)
13 M.L.Meiler,D.R.Lesuer,A.K.Mukherjee,αgrain size andβvolume fraction aspects of the superplasticity of Ti-6Al- 4V,Material Science Engineering,A136,71(1991)
14 G.C.Morgan,C.Hammond,Superplastic deformation properties ofβ-Ti alloys,Material Science Engineering, 86,159(1987)
15 W.A.Bryant,Correlation of data on the hot deformation of Ti-6Al-4V,Journal of Material Science,10,1793(1975)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.