Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (5): 377-388    DOI: 10.11901/1005.3093.2024.262
  研究论文 本期目录 | 过刊浏览 |
碱刻蚀埃洛石纳米管装载2-巯基苯并噻唑自修复涂层的制备和性能
包继华1, 武鹏1, 张浩然1, 褚贵文1, 宋立英1(), 蒋全通2, 麻福斌2
1.山东科技大学 青岛 266590
2.中国科学院海洋研究所 青岛 266071
Self-healing Performance of a Novel Coating Composed of Polydimethylsiloxane Matrix and Surface Modified Halloysite Nanotubes Filler
BAO Jihua1, WU Peng1, ZHANG Haoran1, CHU Guiwen1, SONG Liying1(), JIANG Quantong2, MA Fubin2
1.Shandong University of Science and Technology, Qingdao 266590, China
2.Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
引用本文:

包继华, 武鹏, 张浩然, 褚贵文, 宋立英, 蒋全通, 麻福斌. 碱刻蚀埃洛石纳米管装载2-巯基苯并噻唑自修复涂层的制备和性能[J]. 材料研究学报, 2025, 39(5): 377-388.
Jihua BAO, Peng WU, Haoran ZHANG, Guiwen CHU, Liying SONG, Quantong JIANG, Fubin MA. Self-healing Performance of a Novel Coating Composed of Polydimethylsiloxane Matrix and Surface Modified Halloysite Nanotubes Filler[J]. Chinese Journal of Materials Research, 2025, 39(5): 377-388.

全文: PDF(11907 KB)   HTML
摘要: 

将Cu作为腐蚀基材,采用聚二甲基硅氧烷涂料(加入定量固化剂)作为涂层主体,在涂层中加入一种碱刻蚀埃洛石纳米管(HNTs)装载2-巯基苯并噻唑(MBT)并在表面包覆壳聚糖和聚乙二醇共聚物(CP)的纳米填料,制备一种自修复涂层,浸泡在3.5% (质量分数)的NaCl溶液中。用傅立叶红外吸收光谱(FTIR)、热重分析(TGA)、扫描电子显微镜、电化学阻抗谱(EIS)、Kelvin探针和UV吸收光谱等手段对其表征,研究了这种自修复涂层的性能。结果表明:HNTs装载MBT并被CP成功包覆,HNTs对MBT的装载量(质量分数)为12%;扫描电子显微镜、EIS阻抗、Kelvin探针和UV吸收光谱证明了这种HNTs (CP-HNTs-MBT)涂层的自修复性能良好并能实现二次自修复。可见,CP-HNTs-MBT涂层的防腐蚀性能较强,具有至少两次以上的循环自修复能力。这种涂层对金属材料的保护性能较好。

关键词 有机高分子材料壳聚糖聚乙二醇碱刻蚀埃洛石纳米管2-巯基苯并噻唑循环自修复涂层    
Abstract

Herein, halloysite nanotubes (HNTs) as typical micro-nano carrier were alkali etched to expand their aperture, then, on their surface 2-mercaptobenzothiazole (MBT) was deposited, and finally chitosan-polyethylene glycol copolymer (CP) was coated as top surface layer, thus a new filler of surface modified HNTs was made. Next, a novel self-healing coating (CP-HNTs-MBT) is developed with polydimethylsiloxane (PDMS) as matrix and the surface modified HNTs as filler etc., and then the coating is applied on Cu substrate. The structure and composition of the filler and the corrosion performance, especially its re-healing capacity in 3.5% NaCl solution of the coating are assessed via Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS), UV absorption spectroscopy, immersion test, and Kelvin probe etc. Results indicate that MBT is successfully loaded onto HNTs, achieving a loading capacity of 12% by mass. The results of SEM, EIS, Kelvin probe, and UV absorption spectroscopy confirm the excellent self-healing performance of the CP-HNTs-MBT coating, which can still show significant self-healing ability, even when it is used for second time. It follows that the CP-HNTs-MBT coating exhibits strong corrosion resistance, with the ability to maintain self-healing ability for multiple cycle usage, thereby providing effective protection for metal materials.

Key wordsorganic polymer materials    chitosan    polyethylene glycol    alkaline etched halloysite nanotubes    2-mercaptobenzothiazole    cyclic self-healing coating
收稿日期: 2024-06-12     
ZTFLH:  TG176  
基金资助:山东省自然科学基金(ZR2021ME087);十四五国家重点研发计划(2023YFC2907304);14th Five Year National Key R & D Program Project(2023YFC2907304)
通讯作者: 宋立英,songliying0520@163.com,研究方向为金属腐蚀与防护
Corresponding author: SONG Liying, Tel: (0532)86081281, E-mail: songliying0520@163.com
作者简介: 包继华,男,1971年生,副教授
图1  CP-HNTs-MBT涂层的制备步骤
图2  HNT、HNTs、MBT和HNTs-MBT的傅立叶红外光谱
图3  CS、PEG、CP-HNTs-MBT和HNTs-MBT的傅立叶红外光谱
图4  HNTs、MBT、HNTs-MBT和CP-HNTs-MBT的TGA分析
图5  HNT 、HNTs、HNTs-MBT、CP-HNTs-MBT的SEM照片以及HNTs和CP-HNTs-MBT的TEM照片
图6  CP-HNTs-MBT涂层和空白涂层上的划痕在3.5% NaCl溶液中的阻抗模量(f = 0.01 Hz)
图7  在3.5% NaCl溶液中浸泡0、8、16、24和30 d后CP-HNTs-MBT涂层和空白涂层上划痕的Nyquist和Bode图
图8  等效电路模型
t / dRs / Ω·cm2Y0-Qc / F·cm-2s nnRf / Ω·cm2Cct / F·cm-2Rct / Ω·cm2Rt / Ω·cm2K / %
076.365.871 × 10-60.60353.330 × 1034.219 × 10-85.663 × 1055.696 × 1054.929
899.824.704 × 10-60.67523.232 × 1053.915 × 10-89.402 × 1051.263 × 1064.665
1684.425.531 × 10-60.72845.964 × 1031.038 × 10-51.130 × 1051.190 × 1053.765
2491.54.767 × 10-60.73289.727 × 1041.826 × 10-75.308 × 1056.281 × 1053.000
3091.255.590 × 10-60.71676.547 × 1032.015 × 10-73.655 × 1053.720 × 1053.608
表1  在3.5% NaCl溶液中浸泡0 d,8 d,16 d,24 d,30 d后CP-HNTs-MBT涂层的拟合阻抗参数
t / dRs / Ω·cm2Y0-Qc / F·cm-2s nnRf / Ω·cm2Cct / F·cm-2Rct / Ω·cm2Rt / Ω·cm2K / %
02.009 × 1027.707 × 10-50.51141.38 × 1034.963 × 10-67.875 × 1048.013 × 1041.118
82.058 × 1023.133 × 10-40.52787.377 × 1021.015 × 10-42.167 × 1042.241 × 1041.500
162.664 × 1024.185 × 10-40.53075.672 × 1023.311 × 10-46.730 × 1037.297 × 1031.039
243.630 × 1025.704 × 10-40.53584.005 × 1029.430 × 10-45.406 × 1035.806 × 1031.008
303.330 × 1025.448 × 10-40.52253.668 × 1028.151 × 10-41.609 × 1031.976 × 1031.022
表2  在3.5% NaCl溶液中浸泡0 d,8 d,16 d,24 d,30 d后空白涂层的拟合阻抗参数
图9  CP-HNTs-MBT划痕涂层在3.5% NaCl溶液中浸泡0 d、4 d、6 d和8 d后的SKP电位分布
图10  浸入3.5% NaCl溶液中的含CP-HNTs-MBT涂层上的划痕在0 d和8 d后的SEM图像和EDS数据
图11  CP-HNTs-MBT划痕涂层在3.5% NaCl溶液中浸泡0 d、4 d、6 d和8 d后的SVET电流密度分布
图12  pH = 5和pH = 7的MBT标准浓度曲线
图13  在pH值为5、7条件下MBT释放量与时间的关系
图14  pH = 5、pH = 7的MBT在不同释放时间的UV光谱
图15  腐蚀机理和自修复机理示意图
1 Montemor M F. Functional and smart coatings for corrosion protection: A review of recent advances [J]. Surf. Coat. Technol., 2014, 258(15): 17
2 Dong S G, Zhao B, Lin C J, et al. Corrosion behavior of epoxy/zinc duplex coated rebar embedded in concrete in ocean environment [J]. Constr. Build. Mater., 2011, 28(1): 72
3 Cui M J, Ren S M, Xue Q J, et al. Carbon dots as new eco-friendly and effective corrosion inhibitor [J]. J. Alloy. Compd., 2017, 726(5): 680
4 Rakanta E, Zafeiropoulou T, Batis G. Corrosion protection of steel with DMEA-based organic inhibitor [J]. Constr. Build. Mater., 2013, 44:507
5 Gupta R K, Malviya M, Verma C, et al. Pyridine-based functionalized graphene oxides as a new class of corrosion inhibitors for mild steel: an experimental and DFT approach [J]. RSC Adv., 2017, 7(62): 39063
6 Dong S G, Zhao B, Lin C J, et al. Corrosion behavior of epoxy/zinc duplex coated rebar embedded in concrete in ocean environment [J]. Constr. Build. Mater., 2012, 28(1): 72
7 Wang X H, Chen B, Tang P. Experimental and analytical study on bond strength of normal uncoated and epoxy-coated reinforcing bars [J]. Constr. Build. Mater., 2018, 189: 612
8 Wang J S, Farzad S, Yang H, Huining X. Smart lignin-based polyurethane conjugated with corrosion inhibitor as bio-based anticorrosive sublayer coating [J]. Ind. Crop. Prod., 2022, 188(PB): 115719
9 Feng L J, Xing R W, Wei Q Y, et al. Improvement in corrosion protective performance of polyacrylate coating based on corrosion inhibitors microcapsules [J]. Mater. Lett., 2023, 331(15): 133514
10 Abdullayev E, Lvov Y. Halloysite clay nanotubes for controlled release of protective agents [J]. J. Nanosci. Nanotechnol., 2011, 11(11): 10007
pmid: 22413340
11 Wei W B, Minullina R, Abdullayev E, et al. Enhanced efficiency of antiseptics with sustained release from clay nanotubes [J]. RSC Adv., 2014, 4(1): 488
12 Patel S, Jammalamadaka U, Sun L, et al. Sustained release of antibacterial agents from doped halloysite nanotubes [J]. Bioengineering-Basel, 2015, 3(1): 157
13 Lvov Y M, DeVilliers M M, Fakhrullin R F. The application of halloysite tubule nanoclay in drug delivery [J]. Expert Opin. Drug Deliv., 2016, 13(7): 977
doi: 10.1517/17425247.2016.1169271 pmid: 27027933
14 Vishant G, Sandrine Z, Antoine S, et al. Inhibition of the initial stages of corrosion by 2-mercaptobenzothiazole adsorption and the effects of interfacial oxides on copper in neutral chloride conditions [J]. Corros. Sci., 2023, 225: 11596
15 Kartsonakis L A, Koumoulos E P, Charitidis C A. Advancement in corrosion resistance of AA 2024-T3 through sol-gel coatings including nanocontainers [J]. Manuf. Rev., 2017, 4:2
16 Bozzini B, Busson B, Gaudenzi G P D, et al. Corrosion of cemented carbide grades in petrochemical slurries. Part I - Electrochemical adsorption of CN¯, SCN¯ and MBT: A study based on in situ SFG [J]. Int. J. Refract. Met. Hard Mat., 2016, 60: 37
17 Deng P P, Zhang Y S, Niu Z Y, et al. Multifunctional konjac glucomannan/xanthan gum self-healing coating for bananas preservation [J]. Int. J. Biol. Macromol., 2024, 270(P1): 132287
18 Liu A L, Zhai Y, Fu C H, et al. Self-healing coatings for large-scale damages via ultrahigh load capacity of healing agents in short kapok microtubules [J]. Colloid Surf. A-Physicochem. Eng. Asp., 2024, 693: 134045
19 Chen Y H, Wu L, Yao W H, et al. “Smart” micro/nano container-based self-healing coatings on magnesium alloys: A review [J]. J. Magnes. Alloy., 2023, 11(7): 2230
20 Shchukin D G, Lamaka S V, Yasakau K A, et al. Active anticorrosion coatings with halloysite nanocontainers [J]. J. Phys. Chem. C, 2008, 112(4): 958
21 Xie M, Huang K B, Yang F, et al. Chitosan nanocomposite films based on halloysite nanotubes modification for potential biomedical applications [J]. Int. J. Biol. Macromol., 2020, 151: 1116
doi: S0141-8130(19)37024-2 pmid: 31751717
22 Hessam J, Reza M G, Bagher K, et al. Highly efficient sunitinib release from pH-responsive mHPMC@Chitosan core-shell nanoparticles [J]. Carbohydr. Polym., 2021, 258: 117719
23 Hao X, Qin D, Wang W, et al. Potential non-releasing bacteria-triggered structure reversible nanomicelles with antibacterial properties [J]. Chem. Eng. J., 2021, 403: 126334
24 Ma Q, Liu L L, Wang P, et al. Preparation and corrosion resistance study of a pH-responsive plasma electrolytic oxidation coating modified by halloysite nanotubes [J]. Mater. Today Commun., 2024, 38: 108541
25 Zhai R, Zhang B, Wan Y Z, et al. Chitosan-halloysite hybrid-nanotubes: Horseradish peroxidase immobilization and applications in phenol removal [J]. Chem. Eng. J., 2013, 214: 304
26 Badiei A, Goldooz H, Ziarani G M. A novel method for preparation of 8-hydroxyquinoline functionalized mesoporous silica: Aluminum complexes and photoluminescence studies [J]. Appl. Surf. Sci., 2010, 257(11): 4912
27 Wang M. Preparation and corrosion behavior of self-healing coating with halloysite nanotube loaded inhibitor [D]. Tianjin: Tianjin University, 2019
27 王 美. 埃洛石纳米管负载缓蚀剂型自愈涂层的制备与耐蚀性能 [D]. 天津: 天津大学, 2019
28 Zhao Q, Guo J X, Cui G D, et al. Chitosan derivatives as green corrosion inhibitors for P110 steel in a carbon dioxide environment [J]. Colloid Surf. B-Biointerfaces, 2020, 194: 111150
29 Liu J R, Sipponen M H. Ag-lignin hybrid nanoparticles for high-performance solar absorption in photothermal antibacterial chitosan films [J]. iScience, 2023, 26(10): 108058
30 AlZaidy G A. Impact of hybrid aluminum oxide/titanium dioxide nanoparticles on the structural, optical, and electrical properties of polyvinyl alcohol/ polyethylene glycol nanocomposites for flexible optoelectronic devices [J]. Ceram. Int., 2024, 50(13PA): 23483
31 Saldaña R U A, Cortés L S A, Jiménez A J A, et al. Evaluation of the toxicity and cisplatin drug release ability of nanocomposites of polyethylene glycol and carbon nanotubes functionalized with Zn2+ions [J]. Int. J. Polym. Mater. Polym. Biomat., 2024, 73(11): 946
32 Dong C D. Research on Preparation and Properties of pH-responsive Halloysite nanomaterials [D]. Nanjing: Nanjing University of Aeronauticsand Astronaqutics, 2018
32 董春栋. pH响应型埃洛石纳米材料的制备及其性能研究 [D]. 南京: 南京航空航天大学, 2018
33 Wang W, Xu L K, Li X B, et al. Self-healing properties of protective coatings containing isophorone diisocyanate microcapsules on carbon steel surfaces [J]. Corros. Sci., 2014, 80: 528
34 Arabzadeh H, Shahidi M, Foroughi M M. Electrodeposited polypyrrole coatings on mild steel: Modeling the EIS data with a new equivalent circuit and the influence of scan rate and cycle number on the corrosion protection [J]. J. Electroanal. Chem., 2017, 807: 162
35 Rohwerder M, Turcu F. High-resolution Kelvin probe microscopy in corrosion science: Scanning Kelvin probe force microscopy (SKPFM) versus classical scanning Kelvin probe (SKP) [J]. Electrochim. Acta, 2007, 53(2): 290
36 Song L Y, Gao Z, Sun Q, et al. Corrosion protection performance of a coating with 2-aminino-5-mercato-1,3,4-thiadizole-loaded hollow mesoporous silica on copper [J]. Prog. Org. Coat., 2023, 175: 107331
37 Huo S J, Chen L H, Zhu Q, et al. Surface-enhanced infrared absorption spectroscopy study of anticorrosion behavior of 2-Mercaptobenzothiazole on copper [J]. Acta Phys.-Chim. Sin., 2013, 29(12): 2565
38 Jiao J, Li X, Zhang S, et al. Redox and pH dual-responsive PEG and chitosan-conjugated hollow mesoporous silica for controlled drug release [J]. Mater. Sci. Eng. C-Mater. Biol. Appl., 2016, 67: 26
[1] 朱国豪, 陈平, 徐计雷, 孙慧敏. 低聚聚酰亚胺(SPI)改性的聚酰亚胺(PI)固化物的制备和性能[J]. 材料研究学报, 2025, 39(2): 103-112.
[2] 姜帆, 李琬桐, 赵树发, 石宁, 张梦霞, 方庆红, 李东翰. 高性能液体端羧基氟橡胶的氟化加成反应合成[J]. 材料研究学报, 2025, 39(1): 11-20.
[3] 赵浩成, 姚志广, 尤雪瑞, 赵丽芝. 聚氨酯基复合弹性体阳极键合阴极材料的性能[J]. 材料研究学报, 2025, 39(1): 63-70.
[4] 周键, 夏蒙玥, 张航飞, 刘俏君. DA-PEI共沉积表面改性阳离子交换膜的制备[J]. 材料研究学报, 2024, 38(8): 585-592.
[5] 翁鑫, 李琦琪, 杨桂芳, 吕源财, 刘以凡, 刘明华. 铁负载纤维素/单宁吸附剂的制备及其对氟硅诺酮类抗生素的吸附性能[J]. 材料研究学报, 2024, 38(2): 92-104.
[6] 敖霜霜, 徐嘉晨, 王宇作, 阮殿波, 乔志军. 聚乳酸基硬碳的制备及其电化学性能研究[J]. 材料研究学报, 2024, 38(11): 811-820.
[7] 李宇轩, 杜永刚, 苏俊铭, 王智, 朱永飞. 超疏水苯并噁嗪-ZnO改性海绵的制备及其油水分离性能[J]. 材料研究学报, 2024, 38(1): 71-80.
[8] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[9] 李瀚楼, 焦晓光, 朱欢欢, 赵晓欢, 矫庆泽, 冯彩虹, 赵芸. 支链含氟聚酯的合成和性能[J]. 材料研究学报, 2023, 37(4): 315-320.
[10] 马逸舟, 赵秋莹, 杨路, 裘进浩. 热塑型聚酰亚胺/聚偏氟乙烯全有机复合薄膜的制备及其介电储能[J]. 材料研究学报, 2023, 37(2): 89-94.
[11] 殷洁, 胡云涛, 刘慧, 杨逸霏, 王艺峰. 基于电沉积技术构建聚苯胺/海藻酸膜及电化学性能研究[J]. 材料研究学报, 2022, 36(4): 314-320.
[12] 申延龙, 李北罡. 磁性氨基酸功能化海藻酸铝凝胶聚合物的制备及对偶氮染料的超强吸附[J]. 材料研究学报, 2022, 36(3): 220-230.
[13] 龙庆, 王传洋. 不同碳黑含量PMMA的热降解行为和动力学分析[J]. 材料研究学报, 2022, 36(11): 837-844.
[14] 蒋平, 吴丽华, 吕太勇, José Pérez-Rigueiro, 王安萍. 蜘蛛大壶状腺丝的反复拉伸力学行为和性能[J]. 材料研究学报, 2022, 36(10): 747-759.
[15] 鄢俊, 杨进, 王涛, 徐桂龙, 李朝晖. 有机硅油改性水性酚醛的制备及其性能[J]. 材料研究学报, 2021, 35(9): 651-656.