|
|
MOFs衍生C/LDH/rGO网状复合材料构筑高比容量水系锌离子电容器 |
刘艳云1( ), 王娜1, 张志华2, 白文1, 刘云洁1, 陈勇强3, 李万喜1, 李瑀1 |
1.晋中学院材料科学与工程系 晋中 030619 2.太原海关技术中心 太原 030006 3.晋中学院化学与化工系 晋中 030619 |
|
MOFs Derived C/LDH/rGO Network Composite Materials for High Specific Capacity High-performance Aqueous Zinc Ion Capacitors |
LIU Yanyun1( ), WANG Na1, ZHANG Zhihua2, BAI Wen1, LIU Yunjie1, CHEN Yongqiang3, LI Wanxi1, LI Yu1 |
1.Department of Materials Science and Engineering, Jinzhong University, Jinzhong 030619, China 2.Customs Technology Center of Taiyuan, Taiyuan 030006, China 3.Department of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong 030619, China |
引用本文:
刘艳云, 王娜, 张志华, 白文, 刘云洁, 陈勇强, 李万喜, 李瑀. MOFs衍生C/LDH/rGO网状复合材料构筑高比容量水系锌离子电容器[J]. 材料研究学报, 2025, 39(5): 371-376.
Yanyun LIU,
Na WANG,
Zhihua ZHANG,
Wen BAI,
Yunjie LIU,
Yongqiang CHEN,
Wanxi LI,
Yu LI.
MOFs Derived C/LDH/rGO Network Composite Materials for High Specific Capacity High-performance Aqueous Zinc Ion Capacitors[J]. Chinese Journal of Materials Research, 2025, 39(5): 371-376.
1 |
Xia Y, Mathis T S, Zhao M Q, et al. Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes [J]. Nature, 2018, 557(7705): 409
|
2 |
Kundu D, Adams B D, Duffort V, et al. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode [J]. Nat. Energy, 2016, 1(10): 16119
|
3 |
Bi S, Banda H, Chen M, et al. Molecular understanding of charge storage and charging dynamics in supercapacitors with MOF electrodes and ionic liquid electrolytes [J]. Nat. Mater., 2020, 19(5): 552
doi: 10.1038/s41563-019-0598-7
pmid: 32015536
|
4 |
Liu Y, Chen P, Zhou X, et al. Preparation and electrochemical properties of hollow FeS2/NiS2/Ni3S2@NC cube composites [J]. Chin. J. Mater. Res., 2024, 38(6): 453
|
4 |
刘 莹, 陈 平, 周 雪 等. 中空FeS2/NiS2/Ni3S2@NC立方体复合材料的制备及其电化学性能 [J]. 材料研究学报, 2024, 38(6): 453
|
5 |
Lin M C, Gong M, Lu B, et al. An ultrafast rechargeable aluminium-ion battery [J]. Nature, 2015, 520(4): 325
|
6 |
Simon P, Gogotsi Y, Materials for electrochemical capacitors[J]. Nat. Mater., 2008, 7(11): 845
doi: 10.1038/nmat2297
pmid: 18956000
|
7 |
Ding J, Hu W, Paek E D, et al. Review of hybrid ion capacitors: from aqueous to lithium to sodium [J]. Chem. Rev., 2018, 118(6): 6457
|
8 |
Etacheri V, Marom R, Elazari R, et al. Challenges in the development of advanced Li-ion batteries: a review [J]. Energy Environ. Sci., 2011, 4(9): 3243
|
9 |
Tang H, Yao J, Zhu Y, et al. Recent developments and future prospects for zinc‐ion hybrid capacitors: a review [J]. Adv. Energy Mater., 2021, 11: 2003994
|
10 |
Fang G, Zhou J, Pan A, et al. Recent advances in aqueous zinc-ion batteries [J]. ACS Energy Lett., 2018, 3(7): 2480
|
11 |
Tang B, Shan L, Liang S, et al. Issues and opportunities facing aqueous zinc-ion batteries [J]. J. Energy Environ. Sci., 2019, 12(11): 3288
|
12 |
An G, Hong J S, Pak Y, et al. 2D metal Zn nanostructure electrodes for high‐performance Zn ion supercapacitors [J]. Adv. Energy Mater., 2020, 10: 1902981
|
13 |
Zhu Y, Murali S, Stoller M D, et al. Carbon-based supercapacitors produced by activation of graphene [J]. Science, 2011, 332(6037): 1537
doi: 10.1126/science.1200770
pmid: 21566159
|
14 |
Wang B, Zhao J, Zhang D H, et al. Three-dimensional porous carbon framework coated with one-dimensional nanostructured polyaniline nanowires composite for high performance supercapacitors [J]. Appl. Surf. Sci., 2019, 474(30): 147
|
15 |
Simon P, Gogotsi Y, Materials for electrochemical capacitors[J]. Nat. Mater. 2008, 7(11): 845
doi: 10.1038/nmat2297
pmid: 18956000
|
16 |
Kolleboyina J, Michael H, Andreas S, et al. Covalent graphene-MOF hybrids for high-performance asymmetric supercapacitors [J]. Adv. Mater., 2021, 33: 2004560
|
17 |
Pan Z, Jiang Y, Yang P, et al. In Situ Growth of layered bimetallic ZnCo hydroxide nanosheets for high-performance all-solid-state pseudocapacitor [J]. ACS Nano, 2018, 12: 2968
|
18 |
Kandula S, Shrestha K, Rajeshkhanna R, et al. Kirkendall growth and ostwald ripening induced hierarchical morphology of Ni-Co LDH/MMoSx (M = Co, Ni, and Zn) heteronanostructures as advanced electrode materials for asymmetric solid-state supercapacitors [J]. ACS Appl Mater Interfaces, 2019, 11(12): 11555
|
19 |
Du Q, Su L, Hou L, et al. Rationally designed ultrathin Ni-Al layered double hydroxide and graphene heterostructure for high-performance asymmetric supercapacitor [J]. J. Alloy. Compd., 2018, 740: 1051
|
20 |
Hummers W S, Offeman R E, Preparation of graphitic oxide [J]. J. Amer. Chem. Soc., 1958, 80: 1339
|
21 |
Liu Y Y, Li W X, Chen Y Q, of MOF derivatives@Synthesis3D graphene hybrid materials towards high-performance electrode material for supercapacitors [J]. J. Mater. Sci.: Mater. Electron, 2022, 33:6514
|
22 |
Liu Y Y, Ma L, Chen Y Q, A simple one-step approach for preparing flexible rGO-MnO2 electrode material [J]. J. Mater. Sci.: Mater. Electron, 2018, 29: 17438
|
23 |
Zhu Y L, Du W, Zhang Q L, A metal-organic framework template derived hierarchical Mo-doped LDHs@ MOF-Se core-shell array electrode for supercapacitors [J]. Chem. Commun., 2020, 56: 13848
|
24 |
Jayaramulu K, Horn M, Schneemann A, et al. Covalent graphene‐MOF hybrids for high‐performance asymmetric supercapacitors [J]. Adv. Mater., 2021, 33: 2004560
|
25 |
Brezesinski T, Wang J, Tolbert S H, et al. Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors [J]. Nat. Mater., 2010, 9: 146
doi: 10.1038/nmat2612
pmid: 20062048
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|