Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (5): 371-376    DOI: 10.11901/1005.3093.2024.328
  研究论文 本期目录 | 过刊浏览 |
MOFs衍生C/LDH/rGO网状复合材料构筑高比容量水系锌离子电容器
刘艳云1(), 王娜1, 张志华2, 白文1, 刘云洁1, 陈勇强3, 李万喜1, 李瑀1
1.晋中学院材料科学与工程系 晋中 030619
2.太原海关技术中心 太原 030006
3.晋中学院化学与化工系 晋中 030619
MOFs Derived C/LDH/rGO Network Composite Materials for High Specific Capacity High-performance Aqueous Zinc Ion Capacitors
LIU Yanyun1(), WANG Na1, ZHANG Zhihua2, BAI Wen1, LIU Yunjie1, CHEN Yongqiang3, LI Wanxi1, LI Yu1
1.Department of Materials Science and Engineering, Jinzhong University, Jinzhong 030619, China
2.Customs Technology Center of Taiyuan, Taiyuan 030006, China
3.Department of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong 030619, China
引用本文:

刘艳云, 王娜, 张志华, 白文, 刘云洁, 陈勇强, 李万喜, 李瑀. MOFs衍生C/LDH/rGO网状复合材料构筑高比容量水系锌离子电容器[J]. 材料研究学报, 2025, 39(5): 371-376.
Yanyun LIU, Na WANG, Zhihua ZHANG, Wen BAI, Yunjie LIU, Yongqiang CHEN, Wanxi LI, Yu LI. MOFs Derived C/LDH/rGO Network Composite Materials for High Specific Capacity High-performance Aqueous Zinc Ion Capacitors[J]. Chinese Journal of Materials Research, 2025, 39(5): 371-376.

全文: PDF(6100 KB)   HTML
摘要: 

设计并合成了具有自支撑特性的MOFs衍生C/LDH/rGO网状复合材料,使用X射线衍射谱,扫描电子显微镜,X射线光电子能谱表征其结构和形貌。结果表明:这种MOFs衍生C/Ni-Co LDH为颗粒状结构,分散在rGO的片层中,形成了网状复合材料。用这种材料组装的锌离子电容器电流密度为1.0 A·g-1时比容量为248 F·g-1,循环1500次后电容保留率为97.1%。其原因是,这种复合材料中的MOFs衍生C/LDH/rGO网状结构,为电解液中的离子提供了大量的传输通道和赝电容活性位点。

关键词 复合材料锌离子电容器水热法能量密度    
Abstract

Aqueous Zn ion hybrid capacitors (ZICs), as an emerging energy storage device with low cost, high operational safety and low redox potential, have become a research hotspot in the field of energy storage. This paper focuses on the important research of low energy density of capacitor electrode materials in ZICs. Metal-organic frameworks (MOFs)-derived carbon (C)/layered double hydroxides (LDH)/graphene (rGO) network composite materials with self-supporting characteristics are designed and synthesized. The structure and morphology of the material were characterized by X-ray diffractometer, scanning electron microscope and X-ray photoelectron spectroscopy. The results showed that the MOFs-derived C/ Ni-Co LDH particles were granular structure, dispersed on lamellae of the rGO, forming a network composite material. The specific capacitance of the Zn ion capacitor assembled by this material can reach 248 F·g-1 at a current density of 1.0 A·g-1, which is much larger than the specific capacitance of rGO (142 F·g-1). After 1500 cycles, the capacitance retention rate of the Zn ion capacitor is still as high as 97.1%. The network structure not only provides more transmission channels for electrolyte ions, but also provides more pseudocapacitive active sites. The completion of this paper provides some theoretical guidance and practical significance for the development of high specific energy storage devices.

Key wordscomposite materials    zinc ion capacitors    hydrothermal method    energy density
收稿日期: 2024-07-25     
ZTFLH:  TB383  
基金资助:山西省基础研究自由探索项目(202103021224307);山西省研究生教育创新计划(2021YJG336);山西省科技创新青年人才团队
通讯作者: 刘艳云,副教授,312217642@qq.com,研究方向为储能材料与新型储能装置
Corresponding author: LIU Yanyun, Tel: 15698402116, E-mail: 312217642@qq.com
作者简介: 刘艳云,女,1984年生,博士
图1  MOFs衍生C/LDH/rGO网状复合材料的制备流程
图2  MOFs衍生C/LDH/rGO网状复合材料的XRD谱、SEM图和能谱图
图3  MOFs衍生C/LDH/rGO网状复合材料的XPS谱图
图4  用MOFs衍生C/LDH/rGO网状复合材料组装成的锌离子电容器
图5  用MOFs衍生C/LDH/rGO网状复合材料和rGO分别组装的锌离子电容器性能的对比
1 Xia Y, Mathis T S, Zhao M Q, et al. Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes [J]. Nature, 2018, 557(7705): 409
2 Kundu D, Adams B D, Duffort V, et al. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode [J]. Nat. Energy, 2016, 1(10): 16119
3 Bi S, Banda H, Chen M, et al. Molecular understanding of charge storage and charging dynamics in supercapacitors with MOF electrodes and ionic liquid electrolytes [J]. Nat. Mater., 2020, 19(5): 552
doi: 10.1038/s41563-019-0598-7 pmid: 32015536
4 Liu Y, Chen P, Zhou X, et al. Preparation and electrochemical properties of hollow FeS2/NiS2/Ni3S2@NC cube composites [J]. Chin. J. Mater. Res., 2024, 38(6): 453
4 刘 莹, 陈 平, 周 雪 等. 中空FeS2/NiS2/Ni3S2@NC立方体复合材料的制备及其电化学性能 [J]. 材料研究学报, 2024, 38(6): 453
5 Lin M C, Gong M, Lu B, et al. An ultrafast rechargeable aluminium-ion battery [J]. Nature, 2015, 520(4): 325
6 Simon P, Gogotsi Y, Materials for electrochemical capacitors[J]. Nat. Mater., 2008, 7(11): 845
doi: 10.1038/nmat2297 pmid: 18956000
7 Ding J, Hu W, Paek E D, et al. Review of hybrid ion capacitors: from aqueous to lithium to sodium [J]. Chem. Rev., 2018, 118(6): 6457
8 Etacheri V, Marom R, Elazari R, et al. Challenges in the development of advanced Li-ion batteries: a review [J]. Energy Environ. Sci., 2011, 4(9): 3243
9 Tang H, Yao J, Zhu Y, et al. Recent developments and future prospects for zinc‐ion hybrid capacitors: a review [J]. Adv. Energy Mater., 2021, 11: 2003994
10 Fang G, Zhou J, Pan A, et al. Recent advances in aqueous zinc-ion batteries [J]. ACS Energy Lett., 2018, 3(7): 2480
11 Tang B, Shan L, Liang S, et al. Issues and opportunities facing aqueous zinc-ion batteries [J]. J. Energy Environ. Sci., 2019, 12(11): 3288
12 An G, Hong J S, Pak Y, et al. 2D metal Zn nanostructure electrodes for high‐performance Zn ion supercapacitors [J]. Adv. Energy Mater., 2020, 10: 1902981
13 Zhu Y, Murali S, Stoller M D, et al. Carbon-based supercapacitors produced by activation of graphene [J]. Science, 2011, 332(6037): 1537
doi: 10.1126/science.1200770 pmid: 21566159
14 Wang B, Zhao J, Zhang D H, et al. Three-dimensional porous carbon framework coated with one-dimensional nanostructured polyaniline nanowires composite for high performance supercapacitors [J]. Appl. Surf. Sci., 2019, 474(30): 147
15 Simon P, Gogotsi Y, Materials for electrochemical capacitors[J]. Nat. Mater. 2008, 7(11): 845
doi: 10.1038/nmat2297 pmid: 18956000
16 Kolleboyina J, Michael H, Andreas S, et al. Covalent graphene-MOF hybrids for high-performance asymmetric supercapacitors [J]. Adv. Mater., 2021, 33: 2004560
17 Pan Z, Jiang Y, Yang P, et al. In Situ Growth of layered bimetallic ZnCo hydroxide nanosheets for high-performance all-solid-state pseudocapacitor [J]. ACS Nano, 2018, 12: 2968
18 Kandula S, Shrestha K, Rajeshkhanna R, et al. Kirkendall growth and ostwald ripening induced hierarchical morphology of Ni-Co LDH/MMoSx (M = Co, Ni, and Zn) heteronanostructures as advanced electrode materials for asymmetric solid-state supercapacitors [J]. ACS Appl Mater Interfaces, 2019, 11(12): 11555
19 Du Q, Su L, Hou L, et al. Rationally designed ultrathin Ni-Al layered double hydroxide and graphene heterostructure for high-performance asymmetric supercapacitor [J]. J. Alloy. Compd., 2018, 740: 1051
20 Hummers W S, Offeman R E, Preparation of graphitic oxide [J]. J. Amer. Chem. Soc., 1958, 80: 1339
21 Liu Y Y, Li W X, Chen Y Q, of MOF derivatives@Synthesis3D graphene hybrid materials towards high-performance electrode material for supercapacitors [J]. J. Mater. Sci.: Mater. Electron, 2022, 33:6514
22 Liu Y Y, Ma L, Chen Y Q, A simple one-step approach for preparing flexible rGO-MnO2 electrode material [J]. J. Mater. Sci.: Mater. Electron, 2018, 29: 17438
23 Zhu Y L, Du W, Zhang Q L, A metal-organic framework template derived hierarchical Mo-doped LDHs@ MOF-Se core-shell array electrode for supercapacitors [J]. Chem. Commun., 2020, 56: 13848
24 Jayaramulu K, Horn M, Schneemann A, et al. Covalent graphene‐MOF hybrids for high‐performance asymmetric supercapacitors [J]. Adv. Mater., 2021, 33: 2004560
25 Brezesinski T, Wang J, Tolbert S H, et al. Ordered mesoporous  α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors [J]. Nat. Mater., 2010, 9: 146
doi: 10.1038/nmat2612 pmid: 20062048
[1] 胡勇, 路世峰, 杨滔, 潘春旺, 刘林成, 赵龙志, 唐延川, 刘德佳, 焦海涛. FeCoCrNiMn/6061铝基复合材料的组织性能[J]. 材料研究学报, 2025, 39(5): 353-361.
[2] 张森晗, 王欢, 张家慷, 冯效迁, 张启俭, 赵永华. 改性HZSM-5/Cu-ZnO-Al2O3 催化剂用于二甲醚水蒸气重整制氢[J]. 材料研究学报, 2025, 39(4): 251-258.
[3] 孙波, 张天宇, 赵强强, 王函, 佟钰, 曾尤. MXene@碳纤维毡复合薄膜的电磁屏蔽性能[J]. 材料研究学报, 2025, 39(4): 289-295.
[4] 李颖, 聂学童, 钱立国, 朱忆仁. Co3O4/ZnO@MG-C3Nx 催化剂的合成及其可见光降解亚甲基蓝的性能[J]. 材料研究学报, 2025, 39(4): 241-250.
[5] 唐晨, 张耀宗, 王一凡, 刘超, 赵德润, 董鹏昊. α-Fe2O3/TiO2 光催化材料的制备及其降解苯酚的性能[J]. 材料研究学报, 2025, 39(3): 233-240.
[6] 于文静, 刘春忠, 张洪亮, 卢天倪, 王东, 李娜, 黄震威. SiC含量对SiCP/6092铝基复合材料微弧氧化膜耐蚀性的影响[J]. 材料研究学报, 2025, 39(2): 153-160.
[7] 包秀坤, 史桂梅. NiCo@C(N)/NC纳米复合物的制备及其吸波性能[J]. 材料研究学报, 2025, 39(2): 126-136.
[8] 崔思凯, 付广艳, 林立海, 颜雨坤, 李处森. 碳化硅吸波材料的原位反应法制备及其机理[J]. 材料研究学报, 2024, 38(9): 659-668.
[9] 张恒宇, 黄照单, 段体岗, 温青, 李若灿, 吴厚燃, 马力, 张海兵. 碳基Pt@Co多层次复合催化阴极海水介质电催化氧还原行为研究[J]. 材料研究学报, 2024, 38(8): 632-640.
[10] 黄闻战, 陈尧, 陈鹏, 张玉洁, 陈星宇. 用二次发泡法制备SiC/Al复合泡沫铝孔结构的稳定性[J]. 材料研究学报, 2024, 38(8): 605-613.
[11] 谭上荣, 姚焯, 刘泽辰, 蒋奕蕾, 郭诗琪, 李丽丽. 金属有机骨架Zn-BTC/rGO复合材料的制备和性能[J]. 材料研究学报, 2024, 38(8): 576-584.
[12] 郝子恒, 郑刘梦晗, 张妮, 蒋恩桐, 王国政, 杨继凯. WO3/PtNiO电极电致变色器件的性能[J]. 材料研究学报, 2024, 38(8): 569-575.
[13] 周慧, 杜彬, 杨鹏斌, 金党琴, 肖伽励, 沈明, 王升文. 鸟巢状Bi/β-Bi2O3 异质结的制备及其可见光催化性能[J]. 材料研究学报, 2024, 38(7): 549-560.
[14] 刘莹, 陈平, 周雪, 孙晓杰, 王瑞琪. 中空FeS2/NiS2/Ni3S2@NC立方体复合材料的制备及其电化学性能[J]. 材料研究学报, 2024, 38(6): 453-462.
[15] 边鹏博, 韩修柱, 张峻凡, 朱士泽, 肖伯律, 马宗义. 铝粉粒径和热压温度对15%SiC/2009Al复合材料力学性能的影响[J]. 材料研究学报, 2024, 38(6): 401-409.