Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (12): 909-917    DOI: 10.11901/1005.3093.2025.097
  研究论文 本期目录 | 过刊浏览 |
粉末床熔融B4C/AlSi10Mg复合材料的制备和性能
徐浩宇1, 罗生贵2, 张昊2, 秦艳利1(), 倪丁瑞2, 肖伯律2, 马宗义2
1.沈阳理工大学理学院 沈阳 110158
2.中国科学院金属研究所 沈阳 110016
Microstructure and Properties of B4C/AlSi10Mg Composite Prepared by Laser Powder Bed Fusion
XU Haoyu1, LUO Shenggui2, ZHANG Hao2, QIN Yanli1(), NI Dingrui2, XIAO Bolv2, MA Zongyi2
1.School of Science, Shenyang Ligong University, Shenyang 110158, China
2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

徐浩宇, 罗生贵, 张昊, 秦艳利, 倪丁瑞, 肖伯律, 马宗义. 粉末床熔融B4C/AlSi10Mg复合材料的制备和性能[J]. 材料研究学报, 2025, 39(12): 909-917.
Haoyu XU, Shenggui LUO, Hao ZHANG, Yanli QIN, Dingrui NI, Bolv XIAO, Zongyi MA. Microstructure and Properties of B4C/AlSi10Mg Composite Prepared by Laser Powder Bed Fusion[J]. Chinese Journal of Materials Research, 2025, 39(12): 909-917.

全文: PDF(30422 KB)   HTML
摘要: 

用激光粉末床熔融(LPBF)技术制备质量分数为7%B4C/AlSi10Mg复合材料并优化激光功率和扫描速度等工艺参数,研究了线能量密度对其致密度、微观组织、力学性能和热物理性能的影响。结果表明:随着线能量密度的提高这种复合材料的致密度先提高后降低,线能量密度196.4 J/m时致密度最高(达到97%)。B4C微米颗粒中的C、B元素在高温下扩散,界面反应原位生成了Al3BC相、AlB2相以及微量的Al4C3相。成形样品的室温抗拉强度约为487 MPa,显微维氏硬度约为192HV,比刚度为31.81 m2/s2,温度为22~400 ℃时的热膨胀系数为11.9 × 10-6/℃~21.1 × 10-6/℃,平均热导率为107.6 W·m-1·K-1。这种复合材料较高的比刚度和较低的热膨胀系数使其可用于制造空间光机结构件。

关键词 复合材料激光粉末床熔融微观组织力学性能热物理性能    
Abstract

The 7% B4C/AlSi10Mg (mass fraction) composite was fabricated using laser powder bed fusion (LPBF) technology. The process parameters such as laser power and scanning speed were optimized. The influence of line energy density on density, microstructure, mechanical properties, and thermophysical characteristics of the acquired composite was assessed. Results indicate that with the rising line energy density, the density of the composite increases initially then decreases, reaching peak value of 97% by 196.4 J/m. High-temperature diffusion of C and B elements from micron-sized B4C particles induced interfacial reactions, generating the in-situ formation of Al3BC, AlB2 phases, and trace Al4C3 phases. The acquired composite exhibited room-temperature tensile strength of ~487 MPa, micro-Vickers hardness of ~192HV, specific stiffness of 31.81 m2/s2, and thermal expansion coefficient ranging from 11.9 × 10-6/°C to 21.1 × 10-6/oC between 22-400 oC. The average thermal conductivity measured as 107.6 W·m-1·K-1. The high specific stiffness and low thermal expansion coefficient of this composite make it suitable for manufacturing space optical-mechanical structural components.

Key wordscomposite    laser powder bed fusion    microstructure    mechanical properties    thermophysical properties
收稿日期: 2025-03-04     
ZTFLH:  TG146.2  
基金资助:国家重点研发计划(2023YFB4603301);国家自然科学基金(U21A2043)
通讯作者: 秦艳利,教授,qylndr0628@163.com,研究方向为激光增材制造
Corresponding author: QIN Yanli, Tel: 13504903919, E-mail: qylndr0628@163.com
作者简介: 徐浩宇,男,1998年生,硕士
ElementsAlMgSiFeMnCuTi
Content / %, mass fraction88.930.2910.320.160.100.050.15
表 1  AlSi10Mg合金粉末的化学成分
图1  AlSi10Mg、B4C粉末以及B4C/AlSi10Mg复合粉末的形貌
ParametersParameter range
Laser power / W275-325
Scanning velocity / mm·s-11000-1400
Hatching spacing / µm70
Layer thickness / µm30
表2  LPBF成形的工艺参数
图2  B4C/AlSi10Mg复合材料的致密度与线能量密度的关系
图3  B4C/AlSi10Mg复合材料的XRD谱
图4  AlSi10Mg合金和B4C/AlSi10Mg复合材料的SEM照片、EBSD图像和极图
图5  AlSi10Mg合金和B4C/AlSi10Mg复合材料的晶粒尺寸统计和晶界图像
图6  B4C/AlSi10Mg复合材料的SEM图像、IPFX图、相图以及EDS谱
图7  B4C/AlSi10Mg复合材料的TEM照片和EDS能谱
图8  Al3BC[100]和Al[110]晶带轴下的高分辨照片、衍射斑点以及高分辨照片FFT变换
MaterialsDensity / g·cm-3

Elastic modulus

/ GPa

Specific stiffness / m2·s-2
Al2.7068.0025.19
Mg-Al alloy1.8040.0022.22
Al60612.7068.9025.52
AlSi10Mg2.6271.0027.10
B4C/AlSi10Mg2.6784.9231.81
表3  常用制造光机结构件材料的比刚度[19,20]
图9  LPBF成形 B4C/AlSi10Mg复合材料的典型拉伸曲线
图10  LPBF成形B4C/AlSi10Mg复合材料的断口形貌
图11  LPBF成形B4C/AlSi10Mg复合材料的热膨胀系数
图12  7%B4C/AlSi10Mg复合材料的热导率
[1] Gupta P K, Trivedi A K, Gupta M K, et al. Metal matrix composites for sustainable products: A review on current development [J]. Proc. Inst. Mech. Eng., 2024, 328L: 1827
[2] Kaczmar J W, Pietrzak K, Włosiński W. The production and application of metal matrix composite materials [J]. J. Mater. Process. Technol., 2000, 106(1-3): 58
doi: 10.1016/S0924-0136(00)00639-7
[3] Srivastava A. Recent advances in metal matrix composites (MMCs): A review [J]. Biomed. J. Sci. Tech. Res., 2017, 1: 520
[4] Reddy P V, Kumar G S, Krishnudu D M, et al. Mechanical and wear performances of Aluminium-based metal matrix composites: A review [J]. J. Bio Tribocorros., 2020, 6: 83
[5] Aboulkhair N T, Simonelli M, Parry L, et al. 3D printing of Aluminium alloys: Additive Manufacturing of Aluminium alloys using selective laser melting [J]. Prog. Mater. Sci., 2019, 106: 100578
doi: 10.1016/j.pmatsci.2019.100578
[6] Todd I. No more tears for metal 3D printing [J]. Nature, 2017, 549(7672): 342
doi: 10.1038/549342a
[7] Delahaye J, Habraken A M, Mertens A. 2D FE modeling of the thermal history of the heat affected zone in AlSi10Mg LPBF [J]. Mater. Res. Proc., 2023, 28: 189
[8] Li C G, Sun S, Liu C M, et al. Microstructure and mechanical properties of TiC/AlSi10Mg alloy fabricated by laser additive manufacturing under high-frequency micro-vibration [J]. J. Alloy. Compd., 2019, 794: 236
doi: 10.1016/j.jallcom.2019.04.287
[9] Gu D D, Wang H Q, Chang F, et al. Selective laser melting additive manufacturing of TiC/AlSi10Mg bulk-form nanocomposites with tailored microstructures and properties [J]. Phys. Procedia, 2014, 56: 108
doi: 10.1016/j.phpro.2014.08.153
[10] Xi X, Chen B, Tan C W, et al. Microstructure and mechanical properties of SiC reinforced AlSi10Mg composites fabricated by laser metal deposition [J]. J. Manuf. Process., 2020, 58: 763
doi: 10.1016/j.jmapro.2020.08.073
[11] Yang Z Y, Fan J Z, Liu Y Q, et al. Strengthening and weakening effects of particles on strength and ductility of SiC particle reinforced Al-Cu-Mg alloys matrix composites [J]. Materials, 2021, 14(5): 1219
doi: 10.3390/ma14051219
[12] Dai D H, Gu D D, Xia M J, et al. Melt spreading behavior, microstructure evolution and wear resistance of selective laser melting additive manufactured AlN/AlSi10Mg nanocomposite [J]. Surf. Coat. Technol., 2018, 349: 279
doi: 10.1016/j.surfcoat.2018.05.072
[13] Tan Q Y, Zhang J Q, Mo N, et al. A novel method to 3D-print fine-grained AlSi10Mg alloy with isotropic properties via inoculation with LaB6 nanoparticles [J]. Add. Manufact., 2020, 32: 101034
[14] Zhang L L, Jiang H X, He J, et al. Kinetic behaviour of TiB2 particles in Al melt and their effect on grain refinement of aluminium alloys [J]. Trans. Nonferrous Met. Soc. China, 2020, 30(8): 2035
doi: 10.1016/S1003-6326(20)65358-4
[15] Zhang S Z, Chen Z, Wei P, et al. Microstructure and properties of a nano-ZrO2-reinforced AlSi10Mg matrix composite prepared by selective laser melting [J]. Mater. Sci. Eng., 2022, 838A: 142792
[16] Gao C, Wu W, Shi J, et al. Simultaneous enhancement of strength, ductility, and hardness of TiN/AlSi10Mg nanocomposites via selective laser melting [J]. Add. Manufact., 2020, 34: 101378
[17] Guo H, Zhang Z W, Zhang Y, et al. Improving the mechanical properties of B4C/Al composites by solid-state interfacial reaction [J]. J. Alloy. Compd., 2020, 829: 154521
doi: 10.1016/j.jallcom.2020.154521
[18] Zhao Y F, Ma X, Chen H W, et al. Preferred orientation and interfacial structure in extruded nano-Al3BC/6061 Al [J]. Mater. Des., 2017, 131: 23
doi: 10.1016/j.matdes.2017.05.088
[19] Ren J Y, Chen C Z, He B, et al. Application of SiC and SiC/Al to TMA optical remote sensor [J]. Opt. Precis. Eng., 2008, 16(12): 2537
[20] Zhang D Y, Yi D H, Wu X P, et al. SiC reinforced AlSi10Mg compsites fabricated by selective laser melting [J]. J. Alloy. Compd., 2022, 894: 162365
doi: 10.1016/j.jallcom.2021.162365
[21] Xue G, Ke L D, Zhu H H, et al. Influence of processing parameters on selective laser melted SiCp/AlSi10Mg composites: Densification, microstructure and mechanical properties [J]. Mater. Sci. Eng., 2019, 764A: 138155
[1] 刘金玲, 张艳, 戚栋明, 虞一浩. 三明治结构复合薄膜的制备及其阻燃与电磁屏蔽性能研究[J]. 材料研究学报, 2025, 39(9): 650-660.
[2] 颉芳霞, 吴光庆, 张世文, 卢泽异, 牟彦铭, 何雪明. 7075-TiB2 复合材料的制备和性能[J]. 材料研究学报, 2025, 39(9): 683-693.
[3] 王炳林, 柴一峰, 谭圣霞, 郭升伟, 姜如, 朱中华, 张禹涛, 黄桂芳, 黄维清. g-C3N4/CdS S型异质结复合光催化材料的制备及其性能[J]. 材料研究学报, 2025, 39(9): 712-720.
[4] 张若云, 王伟, 宫鹏辉, 丁士杰, 刘显昊, 孙壮, 吕凡凡, 高原, 王快社. 有机-无机杂化改性磷酸盐/石墨润滑涂层的高温摩擦学性能[J]. 材料研究学报, 2025, 39(9): 661-672.
[5] 杨志儒, 侯文涛, 周海, 杨子, 何浩, 金超. Co3O4/Co9S8 核壳结构电极准固态超级电容器的制备和性能[J]. 材料研究学报, 2025, 39(8): 569-582.
[6] 刘恩典, 白玉, 李嘉文, 郝海. 双连续互穿铝基多孔复合材料的制备和热处理强化[J]. 材料研究学报, 2025, 39(7): 481-488.
[7] 张宁, 王耀奇, 杨毅, 慕延宏, 李震, 陈志勇. Ti65钛合金的超塑变形和微观组织演变[J]. 材料研究学报, 2025, 39(7): 489-498.
[8] 孙世贸, 刘红昌, 刘宏伟, 王军, 商晨楷. 稀土离子掺杂硅藻负极材料的制备及其电化学性能[J]. 材料研究学报, 2025, 39(7): 499-509.
[9] 陈昱溟, 朱晓勇, 谭晓月, 刘家琴, 吴玉程. 面向等离子体第一壁W-Y2O3 复合材料的力学性能[J]. 材料研究学报, 2025, 39(7): 510-520.
[10] 杨亮, 揣荣岩, 薛丹, 刘芳, 刘昆霖, 刘畅, 蔡桂喜. SUS301L不锈钢电阻点焊接头的微观组织和力学性能研究[J]. 材料研究学报, 2025, 39(6): 435-442.
[11] 姜爱龙, 谭炳治, 庞建超, 石锋, 张允继, 邹成路, 李守新, 伍启华, 李小武, 张哲峰. 蠕墨铸铁RuT300RuT450的低周疲劳性能和损伤机制[J]. 材料研究学报, 2025, 39(6): 443-454.
[12] 马雪娥, 胡美凤, 宋雪丽, 常玥, 查飞. 坡缕石负载Zn-In LDO/ZnS/In2S3 复合材料对甲基橙的光催化降解[J]. 材料研究学报, 2025, 39(6): 413-424.
[13] 杨言言, 刘堰, 杨颂, 汪紫彤, 朱峰, 余钟亮, 郝晓刚. 石墨烯掺杂的聚吡咯/钴镍双氢氧化物电控分离低浓度磷酸盐的性能[J]. 材料研究学报, 2025, 39(6): 425-434.
[14] 胡勇, 路世峰, 杨滔, 潘春旺, 刘林成, 赵龙志, 唐延川, 刘德佳, 焦海涛. FeCoCrNiMn/6061铝基复合材料的组织性能[J]. 材料研究学报, 2025, 39(5): 353-361.
[15] 刘艳云, 王娜, 张志华, 白文, 刘云洁, 陈勇强, 李万喜, 李瑀. MOFs衍生C/LDH/rGO网状复合材料构筑高比容量水系锌离子电容器[J]. 材料研究学报, 2025, 39(5): 371-376.