Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (12): 918-926    DOI: 10.11901/1005.3093.2025.039
  研究论文 本期目录 | 过刊浏览 |
温度对球团矿氢还原行为的影响
白立伟1,2, 刘炳南3,4, 佟可蕙5, 张雪2()
1.东北大学材料科学与工程学院 沈阳 110819
2.中国科学院金属研究所 沈阳 110016
3.海洋装备金属材料及其应用全国重点实验室 鞍山 114009
4.鞍钢集团钢铁研究院 鞍山 114009
5.鞍钢集团工程技术有限公司 鞍山 114021
Effect of Temperature on Reduction Behavior of Iron Ore Pellets with Hydrogen
BAI Liwei1,2, LIU Bingnan3,4, TONG Kehui5, ZHANG Xue2()
1.School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3.State Key Laboratory of Metallic Materials for Marine Equipment and Applications, Anshan 114009, China
4.ANSTEEL Iron & Steel Research Institute, Anshan 114009, China
5.ANSTEEL Engineering Technology Corporation Limited, Anshan 114021, China
引用本文:

白立伟, 刘炳南, 佟可蕙, 张雪. 温度对球团矿氢还原行为的影响[J]. 材料研究学报, 2025, 39(12): 918-926.
Liwei BAI, Bingnan LIU, Kehui TONG, Xue ZHANG. Effect of Temperature on Reduction Behavior of Iron Ore Pellets with Hydrogen[J]. Chinese Journal of Materials Research, 2025, 39(12): 918-926.

全文: PDF(20726 KB)   HTML
摘要: 

在600~900 ℃对球团矿进行纯氢还原并分析其还原热力学和组织结构演化,揭示温度对直接还原炼铁行为的微观作用机制。结果表明,在热力学上,球团矿在Fe2O3→Fe3O4反应阶段对还原剂H2的扩散迁至和对反应产物H2O的扩散迁离的需求远低于Fe3O4→FeO和FeO→Fe反应阶段;提高温度可增大Fe3O4→FeO和FeO→Fe反应的热力学驱动力,提高球团矿的还原程度;随着温度的升高球团矿内部孔隙的数量和尺寸变大,缩短了还原反应的扩散传质路径、增大了扩散驱动力;随着温度进一步由800 ℃升高到900 ℃,Fe的形核生长呈现出不同的形态,还原效率的提高较为有限。

关键词 材料科学其它学科氢基直接还原球团矿微观形貌孔隙率    
Abstract

Although the direct reduction of iron ore with hydrogen is regared as an important technological approach for the steel industry to achieve low-carbon development, it shows great potential in reducing energy consumption and enhancing efficiency. However, its application in industry is limited by certain deficiencies in its process theory in the presence. The structural evolution of iron ore pellets during the hydrogen metallurgy process can be changed by adjusting process parameters such as ironmaking temperature, which will impact the reduction behavior as a whole. To uncover the microscopic mechanisms related with the effect of temperature on the process of direct reduction iron-making, therefore, the pure hydrogen reduction of iron ore pellets at 600 oC to 900 oC was examined in terms of the reduction thermodynamics and microstructural evolution of pellets. The findings reveal that, thermodynamically, the Fe2O3→Fe3O4 reaction stage required substantially lower demand for the diffusion to of the reducing agent H2 and the diffusion away of the reaction product H2O in contrast to the Fe3O4→FeO and FeO→Fe reaction stages. Increasing the temperature can improve the overall reduction degree of the pellets by strengthening the thermodynamic driving force for the Fe3O4→FeO and FeO→Fe stages. The number and size of pores in the pellets increase with temperature, which improves the diffusion driving force and shortens the diffusion channel for the reduction reaction. The nucleation and growth of Fe exhibit distinct characteristics as the temperature increases from 800 oC to 900 oC, but the reduction efficiency shows only a slight enhancement. This work is important for optimizing the process of hydrogen direct reduction of iron ore pellets, from a theoretical and practical standpoint.

Key wordsother disciplines of the materials science    hydrogen-based direct reduction    pelletized ore    microstructure    porosity
收稿日期: 2025-01-16     
ZTFLH:  TF554  
基金资助:国家自然科学基金区域创新发展联合基金(U23A20608)
通讯作者: 张雪,研究员,xuezhang@imr.ac.cn,研究方向为临氢环境高温反应机制、高温腐蚀与防护
Corresponding author: ZHANG Xue, Tel: 15140233321, E-mail: xuezhang@imr.ac.cn
作者简介: 白立伟,女,2000年生,硕士生
图1  球团矿还原实验装置
图2  在不同温度下铁氧化物发生还原反应的临界水/氢分压比和在氢气中还原10 min球团矿的还原程度
图3  球团矿在600 ℃纯氢气氛中还原10 min的截面形貌
图4  球团矿在700 ℃纯氢气氛中还原10 min的截面形貌
图5  球团矿在800 ℃纯氢气氛中还原10 min的截面形貌和EDS结果
图6  球团矿在900 ℃纯氢气氛中还原10 min的截面形貌和EDS结果
图7  球团矿中心区域在900 ℃纯氢气氛中还原10 min的EBSD图
[1] Khani M, Ebrahim H A, Habibzadeh S. A comprehensive random pore model kinetic study of hematite to iron reduction by hydrogen [J]. Chem. Eng. Sci., 2023, 281: 119116
doi: 10.1016/j.ces.2023.119116
[2] Zhang J J, Shen H Z, Chen Y L, et al. Iron and steel industry emissions: a global analysis of trends and drivers [J]. Environ. Sci. Technol., 2023, 57: 16477
doi: 10.1021/acs.est.3c05474
[3] Yang C C, Xia G H, Zhu D Q, et al. Review of influencing factors on the reduction disintegration performance of iron ore oxidized pellets [J]. Chin. J. Eng., 2024, 46: 1978
[3] 杨聪聪, 夏光辉, 朱德庆 等. 铁矿氧化球团低温还原粉化性能的影响因素评述 [J]. 工程科学学报, 2024, 46: 1978
[4] Lu S F, Liu Z J, Wang Y Z, et al. Towards green steel-energy and CO2 assessment of low carbon steelmaking via hydrogen based shaft furnace direct reduction process [J]. Energy, 2024, 309: 133080
doi: 10.1016/j.energy.2024.133080
[5] Pei M, Petäjäniemi M, Regnell A, et al. Toward a fossil free future with HYBRIT: development of iron and steelmaking technology in Sweden and Finland [J]. Metals, 2020, 10: 972
doi: 10.3390/met10070972
[6] Heidari A, Ghosalya M K, Mansouri M A, et al. Hydrogen reduction of iron ore pellets: a surface study using ambient pressure X-ray photoelectron spectroscopy [J]. Int. J. Hydrog. Energy, 2024, 83: 148
doi: 10.1016/j.ijhydene.2024.08.094
[7] Wang R R, Zhao Y Q, Babich A, et al. Hydrogen direct reduction (H-DR) in steel industry—An overview of challenges and opportunities [J]. J. Clean. Prod., 2021, 329: 129797
doi: 10.1016/j.jclepro.2021.129797
[8] Elsherbiny A A, Qiu D J, Wang K, et al. Parametric study on hematite pellet direct reduction by hydrogen [J]. Powder Technol., 2024, 435: 119434
doi: 10.1016/j.powtec.2024.119434
[9] Kang H P, Xu Q, Cao Z S, et al. Influence of hydrogen flow rate on multistep kinetics of hematite reduction [J]. Int. J. Hydrog. Energy, 2024, 49: 1255
doi: 10.1016/j.ijhydene.2023.08.295
[10] Bararzadeh Ledari M, Khajehpour H, Akbarnavasi H, et al. Greening steel industry by hydrogen: lessons learned for the developing world [J]. Int. J. Hydrog. Energy, 2023, 48: 36623
doi: 10.1016/j.ijhydene.2023.06.058
[11] Lu X Y, Xu Q, Kang H P, et al. Multistep kinetic study of magnetite reduction by hydrogen based on thermogravimetric analysis [J]. Int. J. Hydrog. Energy, 2024, 73: 695
doi: 10.1016/j.ijhydene.2024.06.081
[12] Shahabuddin M, Brooks G, Rhamdhani M A. Decarbonisation and hydrogen integration of steel industries: recent development, challenges and technoeconomic analysis [J]. J. Clean. Prod., 2023, 395: 136391
doi: 10.1016/j.jclepro.2023.136391
[13] Kuila S K, Chatterjee R, Ghosh D. Kinetics of hydrogen reduction of magnetite ore fines [J]. Int. J. Hydrog. Energy, 2016, 41: 9256
doi: 10.1016/j.ijhydene.2016.04.075
[14] Fan J J, Dong L J, Ma C, et al. Research progress on hydrogen-assisted fatigue crack growth of pipeline steels in hydrogen-blended natural gas environment [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 296
[14] 樊嘉骏, 董立谨, 马 成 等. 掺氢天然气环境下管线钢氢致疲劳裂纹扩展研究进展 [J]. 中国腐蚀与防护学报, 2025, 45: 296
doi: 10.11902/1005.4537.2024.218
[15] Li X, Wei B X, Lu Y H, et al. Research progress on hydrogen damage mechanism of pipeline steel in contact with hydrogen environment [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1125
[15] 李 鑫, 韦博鑫, 鲁仰辉 等. 临氢环境下管线钢氢损伤机理研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 1125
[16] Ali M L, Fradet Q, Riedel U. Particle-resolved computational modeling of hydrogen-based direct reduction of iron ore pellets in a fixed bed. Part I: methodology and validation [J]. Int. J. Hydrog. Energy, 2024, 87: 332
doi: 10.1016/j.ijhydene.2024.09.028
[17] Choisez L, Hemke K, Özgün Ö, et al. Hydrogen-based direct reduction of combusted iron powder: deep pre-oxidation, reduction kinetics and microstructural analysis [J]. Acta Mater., 2024, 268: 119752
doi: 10.1016/j.actamat.2024.119752
[18] Loder A, Santner S, Siebenhofer M, et al. Reaction kinetics of direct reduction of mineral iron carbonate with hydrogen: determination of the kinetic triplet [J]. Chem. Eng. Res. Des., 2022, 188: 575
doi: 10.1016/j.cherd.2022.10.007
[19] Zhang J H, Li S Y, Wang L W. Kinetics analysis of direct reduction of iron ore by hydrogen in fluidized bed based on response surface methodology [J]. Int. J. Hydrog. Energy, 2024, 49: 1318
doi: 10.1016/j.ijhydene.2023.09.243
[20] Bahgat M, Khedr M H. Reduction kinetics, magnetic behavior and morphological changes during reduction of magnetite single crystal [J]. Mater. Sci. Eng., 2007, 138B: 251
[21] Man Y, Feng J X, Li F J, et al. Influence of temperature and time on reduction behavior in iron ore–coal composite pellets [J]. Powder Technol., 2014, 256: 361
doi: 10.1016/j.powtec.2014.02.039
[22] Pineau A, Kanari N, Gaballah I. Kinetics of reduction of iron oxides by H2: Part I: low temperature reduction of hematite [J]. Thermochim. Acta, 2006, 447: 89
doi: 10.1016/j.tca.2005.10.004
[23] Zhang F, Zhu D Q, Pan J, et al. Effect of basicity on the structure characteristics of chromium-nickel bearing iron ore pellets [J]. Powder Technol., 2019, 342: 409
doi: 10.1016/j.powtec.2018.09.100
[24] Cavaliere P, Perrone A, Marsano D. Effect of reducing atmosphere on the direct reduction of iron oxides pellets [J]. Powder Technol., 2023, 426: 118650
doi: 10.1016/j.powtec.2023.118650
[25] Cavaliere P, Dijon L, Laska A, et al. Hydrogen direct reduction and reoxidation behaviour of high-grade pellets [J]. Int. J. Hydrog. Energy, 2024, 49: 1235
doi: 10.1016/j.ijhydene.2023.08.254
[26] Xing L Y, Zou Z S, Qu Y X, et al. Gas–solid reduction behavior of in-flight fine hematite ore particles by hydrogen [J]. Steel Res. Int., 2019, 90: 1800311
doi: 10.1002/srin.v90.1
[27] Sadeghi B, Cavaliere P, Bayat M, et al. Experimental study and numerical simulation on porosity dependent direct reducibility of high-grade iron oxide pellets in hydrogen [J]. Int. J. Hydrog. Energy, 2024, 69: 586
doi: 10.1016/j.ijhydene.2024.05.050
[28] Kim S H, Zhang X, Ma Y, et al. Influence of microstructure and atomic-scale chemistry on the direct reduction of iron ore with hydrogen at 700 °C [J]. Acta Mater., 2021, 212: 116933
doi: 10.1016/j.actamat.2021.116933
[29] Kumar Dube R, Deo B. Morphological changes during reduction of magnetite compacts [J]. Steel Res., 1987, 58: 395
doi: 10.1002/srin.1987.58.issue-9
[30] Rau M F, Rieck D, Evans J W. Investigation of iron oxide reduction by TEM [J]. Metall. Trans., 1987, 18B: 257
[31] El-Geassy A A, Nasr M I. Influence of original structure on the kinetics and mechanisms of carbon monoxide reduction of hematite compacts [J]. ISIJ Int., 1990, 30: 417
doi: 10.2355/isijinternational.30.417
[32] Pflieger C, Eckhard T, Böttger J, et al. The catalytic effect of iron oxide phases on the conversion of cellulose-derived chars in diluted O2 and CO2 [J]. Appl. Energy, 2024, 353: 122068
doi: 10.1016/j.apenergy.2023.122068
[1] 韩磊磊, 王文涛, 吴赟, 陈嘉俊, 赵勇. 无氟化学溶液法制备YBCO超导焊料的高温生长工艺研究[J]. 材料研究学报, 2025, 39(6): 474-480.
[2] 钟伟杰, 焦东玲, 刘仲武, 刘娜, 许文勇, 李周, 张国庆. 热等静压态镍基高温合金的高温氧化[J]. 材料研究学报, 2025, 39(3): 172-184.
[3] 季洪梅, 王絮, 李小武. 贝壳珍珠质及交叉叠片结构体外类骨磷灰石生长的对比研究[J]. 材料研究学报, 2023, 37(4): 241-247.
[4] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[5] 赵宁, 焦大, 朱艳坤, 刘德学, 刘增乾, 张哲峰. 天然铠甲高效防护的材料学机理[J]. 材料研究学报, 2022, 36(1): 1-7.
[6] 张光成, 袁天祥, 马德林, 周萍, 郭超群, 周芸, 左孝青. 410L430L泡沫钢性能的比较[J]. 材料研究学报, 2021, 35(8): 597-605.
[7] 张军,张磊,李国栋,熊翔. 化学气相沉积ZrB2涂层的微观形貌及晶粒择优生长[J]. 材料研究学报, 2017, 31(3): 168-174.
[8] 周心龙,刘祖亮,王晓鸣,郑宇,施群荣. ANPyO高温下热分解过程的分子动力学模拟*[J]. 材料研究学报, 2016, 30(12): 940-946.
[9] 郑传伟 杨振明 张劲松. 反应烧结多孔碳化硅的高温氧化行为[J]. 材料研究学报, 2010, 24(1): 103-107.
[10] 施国栋 何德坪 何思渊 丁龙. 新型塑性加工制备球形孔多孔金属及其性能[J]. 材料研究学报, 2009, 23(2): 143-148.
[11] 胡巧玲; 李晓东; 沈家骢 . 仿生结构材料的研究进展[J]. 材料研究学报, 2003, 17(4): 337-344.
[12] 张人佶; 熊卓; 王笠 . 聚乳酸组织工程支架表面涂覆钙磷盐的工艺研究[J]. 材料研究学报, 2003, 17(2): 145-150.
[13] 郑明军; 何德坪 . 新型高强度胞状铝合金的压缩及能量吸收性能[J]. 材料研究学报, 2002, 16(5): 473-478.
[14] 吴照金; 何德坪 . 泡沫Al孔结构的影响因素[J]. 材料研究学报, 2000, 14(3): 277-282.