|
|
|
| 温度对球团矿氢还原行为的影响 |
白立伟1,2, 刘炳南3,4, 佟可蕙5, 张雪2( ) |
1.东北大学材料科学与工程学院 沈阳 110819 2.中国科学院金属研究所 沈阳 110016 3.海洋装备金属材料及其应用全国重点实验室 鞍山 114009 4.鞍钢集团钢铁研究院 鞍山 114009 5.鞍钢集团工程技术有限公司 鞍山 114021 |
|
| Effect of Temperature on Reduction Behavior of Iron Ore Pellets with Hydrogen |
BAI Liwei1,2, LIU Bingnan3,4, TONG Kehui5, ZHANG Xue2( ) |
1.School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China 2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 3.State Key Laboratory of Metallic Materials for Marine Equipment and Applications, Anshan 114009, China 4.ANSTEEL Iron & Steel Research Institute, Anshan 114009, China 5.ANSTEEL Engineering Technology Corporation Limited, Anshan 114021, China |
引用本文:
白立伟, 刘炳南, 佟可蕙, 张雪. 温度对球团矿氢还原行为的影响[J]. 材料研究学报, 2025, 39(12): 918-926.
Liwei BAI,
Bingnan LIU,
Kehui TONG,
Xue ZHANG.
Effect of Temperature on Reduction Behavior of Iron Ore Pellets with Hydrogen[J]. Chinese Journal of Materials Research, 2025, 39(12): 918-926.
| [1] |
Khani M, Ebrahim H A, Habibzadeh S. A comprehensive random pore model kinetic study of hematite to iron reduction by hydrogen [J]. Chem. Eng. Sci., 2023, 281: 119116
doi: 10.1016/j.ces.2023.119116
|
| [2] |
Zhang J J, Shen H Z, Chen Y L, et al. Iron and steel industry emissions: a global analysis of trends and drivers [J]. Environ. Sci. Technol., 2023, 57: 16477
doi: 10.1021/acs.est.3c05474
|
| [3] |
Yang C C, Xia G H, Zhu D Q, et al. Review of influencing factors on the reduction disintegration performance of iron ore oxidized pellets [J]. Chin. J. Eng., 2024, 46: 1978
|
| [3] |
杨聪聪, 夏光辉, 朱德庆 等. 铁矿氧化球团低温还原粉化性能的影响因素评述 [J]. 工程科学学报, 2024, 46: 1978
|
| [4] |
Lu S F, Liu Z J, Wang Y Z, et al. Towards green steel-energy and CO2 assessment of low carbon steelmaking via hydrogen based shaft furnace direct reduction process [J]. Energy, 2024, 309: 133080
doi: 10.1016/j.energy.2024.133080
|
| [5] |
Pei M, Petäjäniemi M, Regnell A, et al. Toward a fossil free future with HYBRIT: development of iron and steelmaking technology in Sweden and Finland [J]. Metals, 2020, 10: 972
doi: 10.3390/met10070972
|
| [6] |
Heidari A, Ghosalya M K, Mansouri M A, et al. Hydrogen reduction of iron ore pellets: a surface study using ambient pressure X-ray photoelectron spectroscopy [J]. Int. J. Hydrog. Energy, 2024, 83: 148
doi: 10.1016/j.ijhydene.2024.08.094
|
| [7] |
Wang R R, Zhao Y Q, Babich A, et al. Hydrogen direct reduction (H-DR) in steel industry—An overview of challenges and opportunities [J]. J. Clean. Prod., 2021, 329: 129797
doi: 10.1016/j.jclepro.2021.129797
|
| [8] |
Elsherbiny A A, Qiu D J, Wang K, et al. Parametric study on hematite pellet direct reduction by hydrogen [J]. Powder Technol., 2024, 435: 119434
doi: 10.1016/j.powtec.2024.119434
|
| [9] |
Kang H P, Xu Q, Cao Z S, et al. Influence of hydrogen flow rate on multistep kinetics of hematite reduction [J]. Int. J. Hydrog. Energy, 2024, 49: 1255
doi: 10.1016/j.ijhydene.2023.08.295
|
| [10] |
Bararzadeh Ledari M, Khajehpour H, Akbarnavasi H, et al. Greening steel industry by hydrogen: lessons learned for the developing world [J]. Int. J. Hydrog. Energy, 2023, 48: 36623
doi: 10.1016/j.ijhydene.2023.06.058
|
| [11] |
Lu X Y, Xu Q, Kang H P, et al. Multistep kinetic study of magnetite reduction by hydrogen based on thermogravimetric analysis [J]. Int. J. Hydrog. Energy, 2024, 73: 695
doi: 10.1016/j.ijhydene.2024.06.081
|
| [12] |
Shahabuddin M, Brooks G, Rhamdhani M A. Decarbonisation and hydrogen integration of steel industries: recent development, challenges and technoeconomic analysis [J]. J. Clean. Prod., 2023, 395: 136391
doi: 10.1016/j.jclepro.2023.136391
|
| [13] |
Kuila S K, Chatterjee R, Ghosh D. Kinetics of hydrogen reduction of magnetite ore fines [J]. Int. J. Hydrog. Energy, 2016, 41: 9256
doi: 10.1016/j.ijhydene.2016.04.075
|
| [14] |
Fan J J, Dong L J, Ma C, et al. Research progress on hydrogen-assisted fatigue crack growth of pipeline steels in hydrogen-blended natural gas environment [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 296
|
| [14] |
樊嘉骏, 董立谨, 马 成 等. 掺氢天然气环境下管线钢氢致疲劳裂纹扩展研究进展 [J]. 中国腐蚀与防护学报, 2025, 45: 296
doi: 10.11902/1005.4537.2024.218
|
| [15] |
Li X, Wei B X, Lu Y H, et al. Research progress on hydrogen damage mechanism of pipeline steel in contact with hydrogen environment [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1125
|
| [15] |
李 鑫, 韦博鑫, 鲁仰辉 等. 临氢环境下管线钢氢损伤机理研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 1125
|
| [16] |
Ali M L, Fradet Q, Riedel U. Particle-resolved computational modeling of hydrogen-based direct reduction of iron ore pellets in a fixed bed. Part I: methodology and validation [J]. Int. J. Hydrog. Energy, 2024, 87: 332
doi: 10.1016/j.ijhydene.2024.09.028
|
| [17] |
Choisez L, Hemke K, Özgün Ö, et al. Hydrogen-based direct reduction of combusted iron powder: deep pre-oxidation, reduction kinetics and microstructural analysis [J]. Acta Mater., 2024, 268: 119752
doi: 10.1016/j.actamat.2024.119752
|
| [18] |
Loder A, Santner S, Siebenhofer M, et al. Reaction kinetics of direct reduction of mineral iron carbonate with hydrogen: determination of the kinetic triplet [J]. Chem. Eng. Res. Des., 2022, 188: 575
doi: 10.1016/j.cherd.2022.10.007
|
| [19] |
Zhang J H, Li S Y, Wang L W. Kinetics analysis of direct reduction of iron ore by hydrogen in fluidized bed based on response surface methodology [J]. Int. J. Hydrog. Energy, 2024, 49: 1318
doi: 10.1016/j.ijhydene.2023.09.243
|
| [20] |
Bahgat M, Khedr M H. Reduction kinetics, magnetic behavior and morphological changes during reduction of magnetite single crystal [J]. Mater. Sci. Eng., 2007, 138B: 251
|
| [21] |
Man Y, Feng J X, Li F J, et al. Influence of temperature and time on reduction behavior in iron ore–coal composite pellets [J]. Powder Technol., 2014, 256: 361
doi: 10.1016/j.powtec.2014.02.039
|
| [22] |
Pineau A, Kanari N, Gaballah I. Kinetics of reduction of iron oxides by H2: Part I: low temperature reduction of hematite [J]. Thermochim. Acta, 2006, 447: 89
doi: 10.1016/j.tca.2005.10.004
|
| [23] |
Zhang F, Zhu D Q, Pan J, et al. Effect of basicity on the structure characteristics of chromium-nickel bearing iron ore pellets [J]. Powder Technol., 2019, 342: 409
doi: 10.1016/j.powtec.2018.09.100
|
| [24] |
Cavaliere P, Perrone A, Marsano D. Effect of reducing atmosphere on the direct reduction of iron oxides pellets [J]. Powder Technol., 2023, 426: 118650
doi: 10.1016/j.powtec.2023.118650
|
| [25] |
Cavaliere P, Dijon L, Laska A, et al. Hydrogen direct reduction and reoxidation behaviour of high-grade pellets [J]. Int. J. Hydrog. Energy, 2024, 49: 1235
doi: 10.1016/j.ijhydene.2023.08.254
|
| [26] |
Xing L Y, Zou Z S, Qu Y X, et al. Gas–solid reduction behavior of in-flight fine hematite ore particles by hydrogen [J]. Steel Res. Int., 2019, 90: 1800311
doi: 10.1002/srin.v90.1
|
| [27] |
Sadeghi B, Cavaliere P, Bayat M, et al. Experimental study and numerical simulation on porosity dependent direct reducibility of high-grade iron oxide pellets in hydrogen [J]. Int. J. Hydrog. Energy, 2024, 69: 586
doi: 10.1016/j.ijhydene.2024.05.050
|
| [28] |
Kim S H, Zhang X, Ma Y, et al. Influence of microstructure and atomic-scale chemistry on the direct reduction of iron ore with hydrogen at 700 °C [J]. Acta Mater., 2021, 212: 116933
doi: 10.1016/j.actamat.2021.116933
|
| [29] |
Kumar Dube R, Deo B. Morphological changes during reduction of magnetite compacts [J]. Steel Res., 1987, 58: 395
doi: 10.1002/srin.1987.58.issue-9
|
| [30] |
Rau M F, Rieck D, Evans J W. Investigation of iron oxide reduction by TEM [J]. Metall. Trans., 1987, 18B: 257
|
| [31] |
El-Geassy A A, Nasr M I. Influence of original structure on the kinetics and mechanisms of carbon monoxide reduction of hematite compacts [J]. ISIJ Int., 1990, 30: 417
doi: 10.2355/isijinternational.30.417
|
| [32] |
Pflieger C, Eckhard T, Böttger J, et al. The catalytic effect of iron oxide phases on the conversion of cellulose-derived chars in diluted O2 and CO2 [J]. Appl. Energy, 2024, 353: 122068
doi: 10.1016/j.apenergy.2023.122068
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|