Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (5): 321-329    DOI: 10.11901/1005.3093.2023.312
  综述 本期目录 | 过刊浏览 |
122体系铁基超导单晶的制备及其化学掺杂研究进展
余启航1, 杨芳1(), 刘吉星2, 贺一轩1, 张胜楠2, 闫果1,3, 张平祥1,2
1.西北工业大学 超导材料与应用技术研究院 西安 710072
2.西北有色金属研究院 西安 710016
3.西安聚能医工科技有限公司 西安 710028
Research Progress on Fabrication and Chemical Doping of 122-type Iron-based Single Crystal Superconductors
YU Qihang1, YANG Fang1(), LIU Jixing2, HE Yixuan1, ZHANG Shengnan2, YAN Guo1,3, ZHANG Pingxiang1,2
1.Institute of Superconducting Materials and Applied Technology, Northwestern Polytechnical University, Xi'an 710072, China
2.Northwest Institute for Nonferrous Metal Research, Xi'an 710016, China
3.Xi'an Juneng Medical Engineering Technologies Co., Ltd., Xi'an 710028, China
引用本文:

余启航, 杨芳, 刘吉星, 贺一轩, 张胜楠, 闫果, 张平祥. 122体系铁基超导单晶的制备及其化学掺杂研究进展[J]. 材料研究学报, 2024, 38(5): 321-329.
Qihang YU, Fang YANG, Jixing LIU, Yixuan HE, Shengnan ZHANG, Guo YAN, Pingxiang ZHANG. Research Progress on Fabrication and Chemical Doping of 122-type Iron-based Single Crystal Superconductors[J]. Chinese Journal of Materials Research, 2024, 38(5): 321-329.

全文: PDF(6262 KB)   HTML
摘要: 

制备铁基超导体122体系的高质量、大尺寸单晶较为容易,对于研究铁基超导机理有重要的意义。122铁砷超导体母相没有超导性,进行化学掺杂在体系中引入电子、空穴或加化学压力,可诱导出超导性。本文总结了助熔剂法、布里奇曼法和光学浮区法等几种122体系铁基超导单晶的制备方法,并介绍了相关方法和研究进展。本文还概述了电子掺杂、空穴掺杂、等价掺杂等几种122铁砷超导体的化学掺杂以及相关研究进展。

关键词 评述铁基超导体单晶制备方法化学掺杂    
Abstract

The discovery of iron-based superconductors has offered a new material family for exploring the mechanism of high-temperature superconductivity. 122-type iron-based superconductors has been widely studied by various researchers due to the easy fabrication for the parent compounds of 122-type iron arsenic matrix of high-quality single crystals of large-size. However, which do not intrinsically exhibit superconductivity. Generally, superconductivity is induced through chemical doping to introduce electrons, holes or chemical pressure in these compounds. This paper summarizes several fabrication methods on the single crystals of 122-type iron-based superconductors, including the flux method, Bridgman method, and optical floating zone method. The related research progress of these crystal growth methods are also reviewed. Besides, the recent rsearch progress related with chemical dopingof 122 iron arsenic superconductors, such aselectron doping, hole doping and isovalent doping etc. is also summerized.

Key wordsreview    iron-based superconductor    single crystal    preparation method    chemical doping
收稿日期: 2023-06-25     
ZTFLH:  TB32  
基金资助:国家重点研发计划(2021YFB3800200);国家自然科学基金(52372259);第八届中国科协青年人才托举工程(2022QNRC001)
通讯作者: 杨 芳,研究员,yangfang@nwpu.edu.cn,研究方向为超导材料的制备与应用
Corresponding author: YANG Fang, Tel: 18991255975, E-mail: yangfang@nwpu.edu.cn
作者简介: 余启航,男,2000年生,硕士生
图1  铁基超导晶体结构
图2  Ca1-x Na x Fe2As2单晶的室温X射线衍射谱[27]和BaFe2(As1 - x P x)2不同组成的(008)峰[28]
图3  制备BaFe1.87Co0.13As2单晶装置的示意图和尺寸达20 mm × 10 mm × 2 mm的BaFe1.87Co0.13As2超导单晶[32]
图4  Ba0.6K0.4Fe2As2超导单晶和BaFe2 - x Co x As2超导单晶的室温X射线衍射谱[35]
图5  用布里奇曼法制备的位于铸锭下方的Ba122超导单晶[36]和利用布里奇曼法制备的Ba(Fe1 - x Co x)2As2超导单晶的部分样品[37]
图6  用于晶体生长的密封双壁安瓿和Cs x Fe2 - y Se2超导晶体不同区域的Cs、Fe和Se元素的显微XRF分布图[38]
图7  K x Fe2 - y Se2超导单晶生长过程[41]
图8  Ba(Fe1 - x Co x)2As2 (x < 0.12)单晶超导相图[46]
图9  Ca1 - x Na x Fe2As2超导相图[54]
图10  BaFe2(As1 - x P x)2超导相图[58]
1 Kamihara Y, Watanabe T, Hirano M, et al. Iron-Based layered superconductor La[O1 - x F x ]FeAs (x = 0.05-0.12) with Tc = 26 K[J]. J. Am. Chem. Soc., 2008, 130(11): 3296
doi: 10.1021/ja800073m pmid: 18293989
2 Ren Z A, Lu W, Yang J, et al. Superconductivity at 55 K in iron-based F-doped layered quaternary compound Sm[O1 - x F x ]FeAs[J]. Chin. Phys. Lett., 2008, 25(6): 2215
3 Johnson P D, Xu G, Yin W G. Iron-Based Superconductivity[M]. Cham, Springer International Publishing, 2015: 21
4 Guo J, Jin S, Wang G, et al. Superconductivity in the iron selenide K x Fe2Se2(0 ≤ x ≤ 1.0)[J]. Phys. Rev. B, 2010, 82(18): 180520
5 Li C H, Shen B, Han F, et al. Transport properties and anisotropy of Rb1 - x Fe2 - ySe2 single crystals[J]. Phys. Rev. B, 2011, 83(18): 184521
6 Krzton-Maziopa A, Shermadini Z, Pomjakushina E, et al. Synthesis and crystal growth of Cs0.8(FeSe0.98)2: A new iron-based superconductor with Tc = 27 K[J]. J. Phys.: Condens. Matter, 2011, 23(5): 052203
7 Fang M H, Wang H D, Dong C H, et al. Fe-based superconductivity with Tc = 31 K bordering an antiferromagnetic insulator in (Tl, K)Fe x Se2[J]. EPL, 2011, 94(2): 27009
8 Park T, Park E, Lee H, et al. Pressure-induced superconductivity in CaFe2As2[J]. J. Phys.: Condens. Matter, 2008, 20(32): 322204
9 Wang Z, Song Y J, Shi H L, et al. Microstructure and ordering of iron vacancies in the superconductor system K y Fe x Se2 as seen via transmission electron microscopy[J]. Phys. Rev. B, 2011, 83(14): 140505
10 Ricci A, Poccia N, Joseph B, et al. Intrinsic phase separation in superconducting K0.8Fe1.6Se2(Tc = 31.8 K) single crystals[J]. Supercond. Sci. Technol., 2011, 24(8): 082002
11 Quebe P, Terbüchte L J, Jeitschko W. Quaternary rare earth transition metal arsenide oxides RTAsO (T = Fe, Ru, Co) with ZrCuSiAs type structure[J]. J. Alloys Compd., 2000, 302: 70
12 Zhigadlo N D, Katrych S, Bukowski Z, et al. Single crystals of superconducting SmFeAsO1 - x F y grown at high pressure[J]. J. Phys.: Condens. Matter, 2008, 20: 342202
13 Fang L, Cheng P, Jia Y, et al. Growth of NdFeAs(O1 - x F x) single crystals at ambient pressure and their transport properties[J]. J. Cryst. Growth, 2009, 311: 358
14 Luo H Q, Cheng P, Wang Z S, et al. Normal state transport properties in single crystals of Ba1 - x K x Fe2As2 and NdFeAsO1 - x F x [J]. Physica C, 2009, 469: 477
15 Ni N, Bud'ko S L, Kreyssig A, et al. Anisotropic thermodynamic and transport properties of single-crystalline Ba1 - xK x Fe2As2 (x=0 and 0.45)[J]. Phys. Rev. B, 2008, 78: 014507
16 Ronning F, Klimczuk T, Bauer E D, et al. Synthesis and properties of CaFe2As2 single crystals[J]. J. Phys.: Condens. Matter, 2008, 20: 322201
17 Yan J Q, Kreyssig A, Nandi S, et al. Structural transition and anisotropic properties of single-crystalline SrFe2As2[J]. Phys. Rev. B, 2008, 78: 024516
18 Chen G F, Li Z, Dong J, et al. Transport and anisotropy in single-crystalline SrFe2As2 and A0.6K0.4Fe2As2 (A = Sr, Ba) superconductors[J]. Phys. Rev. B, 2008, 78: 224512
19 Luo H Q, Wang Z S, Yang H, et al. Growth and characterization of A1 - x K x Fe2As2 (A = Ba, Sr) single crystals with x = 0-0.4[J]. Supercond. Sci. Technol., 2008, 21: 125014
20 Prozorov R, Ni N, Tanatar M A, et al. Vortex phase diagram of Ba(Fe0.93Co0.07)2As2 single crystals[J]. Phys. Rev. B, 2008, 78(22): 224506
21 Luo X, Chen X. Crystal structure and phase diagrams of iron-based superconductors[J]. Sci. China Mater., 2015, 58: 77
22 Chen Y, Lu X, Wang M, et al. Systematic growth of BaFe2 - x Ni x As2 large crystals[J]. Supercond. Sci. Technol., 2011, 24: 065004
23 Zhang R, Gong D, Lu X, et al. The effect of Cr impurity to superconductivity in electron-doped BaFe2 - x Ni x As2[J]. Supercond. Sci. Technol., 2014, 27: 115003
24 Xie T, Gong D, Zhang W, et al. Crystal growth and phase diagram of 112-type iron pnictide superconductor Ca1 - y La y Fe1 - x Ni x As2[J]. Supercond. Sci. Technol., 2017, 30: 095002
25 Meier W R, Kong T, Bud’ko S L, et al. Optimization of the crystal growth of the superconductor CaKFe4As4 from solution in the FeAs-CaFe2As2-KFe2As2 system[J]. Phys. Rev. Mater., 2017, 1: 013401
26 Gu Y, Wang J, Ma X, et al. Single-crystal growth of the iron-based superconductor La0.34Na0.66Fe2As2[J]. Supercond. Sci. Technol., 2018, 31: 125008
27 Zhou H L, Zhang Y H, Li Y, et al. Growth and characterization of superconducting Ca1 - x Na x Fe2A2 single crystals by NaAs-flux met-hod[J]. Chin. Phys. B, 2022, 31(11): 117401
28 Nakajima M, Uchida S, Kihou K, et al. Growth of BaFe2(As1 - x P x)2 single crystals (0 ≤ x ≤ 1) by Ba2A2/Ba2P3-flux method[J]. J. Phys. Soc. Jpn., 2012, 81(10): 104710
29 Han F, Yang H, Shen B, et al. Metastable superconducting state in quenched K x Fe2 - y Se2[J]. Philos. Mag, 2012, 92(19-21): 2553
30 Wang G, Ying T, Huang Y, et al. Growth of (Na x K y)FezSe2 crystals by chlorides flux at low temperatures[J]. J. Cryst. Growth, 2014, 405: 1
31 Chen D P, Lin C T. The growth of 122 and 11 iron-based superconductor single crystals and the influence of doping[J]. Supercond. Sci. Technol., 2014, 27(10): 103002
32 Sun D L, Liu Y, Park J T, et al. Growth of large single crystals of BaFe1.87Co0.13As2 using a nucleation pole[J]. Supercond. Sci. Technol., 2009, 22(10): 105006
33 Liu Y, Sun D L, Park J T, et al. Aliovalent iron-doped BaFe2As2: single crystal growth and superconductivity[J]. Physica C, 2010, 470: 513
doi: 10.1016/j.physc.2009.11.024
34 Wang C L, Gao Z S, Yao C, et al. One-step method to grow Ba0.6K0.4Fe2As2 single crystals without fluxing agent[J]. Supercond. Sci. Technol., 2011, 24(6): 065002
35 Zhang C J, Zhang L, Xi C Y, et al. Single-crystal growth of BaFe2 - x Co x As2 without fluxing agent[J]. J. Supercond. Nov. Magn., 2011, 24(7): 2041.
36 Morinaga R, Matan K, Suzuki H S, et al. Single-crystal growth of the ternary BaFe2As2 phase using the vertical Bridgman technique[J]. Jpn. J. Appl. Phys., 2009, 48(1): 013004
37 Aswartham S, Nacke C, Friemel G, et al. Single crystal growth and physical properties of superconducting ferro-pnictides Ba(Fe, Co)2As2 grown using self-flux and Bridgman techniques[J]. J. Cryst. Growth, 2011, 314(1): 341
38 Krzton-Maziopa A, Pomjakushina E, Conder K. Single crystals of novel alkali metal intercalated iron chalcogenide superconduc-tors[J]. J. Cryst. Growth, 2012, 360: 155
39 Wen J, Xu G, Gu G, et al. Interplay between magnetism and superconductivity in iron-chalcogenide superconductors: crystal growth and characterizations[J]. Rep. Prog. Phys., 2011, 74: 124503
40 Wu A H, Shen H, Xu J Y, et al. Optical floating zone furnace: principles and applications in crystal growth[J]. J. Funct. Mater., 2007, 38(A10): 4036
40 武安华, 申 慧, 徐家跃 等. 光学浮区法生长技术及其在晶体生长中的应用[J]. 功能材料, 2007, 38(A10): 4036
41 Liu Y, Li Z C, Liu W P, et al. K x Fe2 - y Se2 single crystals: floating-zone growth, transport and structural properties[J]. Supercond. Sci. Technol., 2012, 25(7): 075001
42 Chen X, Dai P, Feng D, et al. Iron-based high transition temperature superconductors[J]. Nat. Sci. Rev., 2014, 1: 371
43 Wei F Y, Lv B, Deng L Z, et al. The unusually high Tc in rare-earth-doped single crystalline CaFe2As2[J]. Phil. Mag., 2014, 94(22): 2562
44 Leithe-Jasper A, Schnelle W, Geibel C, et al. Superconducting state in SrFe2 - xCo x As2 by internal doping of the iron arsenide layers[J]. Phys. Rev. Lett., 2008, 101(20): 207004
45 Sefat A S, Jin R, McGuire M A, et al. Superconductivity at 22 K in Co-doped BaFe2As2 crystals[J]. Phys. Rev. Lett., 2008, 101(11): 117004
46 Ni N, Tillman M E, Yan J Q, et al. Effects of Co substitution on thermodynamic and transport properties and anisotropic Hc2 in Ba(Fe1 - x Co x)2As2 single crystals[J]. Phys. Rev. B, 2008, 78(21): 214515
47 Han F, Zhu X, Cheng P, et al. Superconductivity and phase diagrams of the 4d- and 5d- metal-doped iron arsenides SrFe2 - x M x As2 (M = Rh, Ir, Pd)[J]. Phys. Rev. B, 2009, 80(2): 024506
48 Ni N, Thaler A, Kracher A, et al. Phase diagrams of Ba(Fe1 - x M x)2As2 single crystals (M = Rh and Pd)[J]. Phys. Rev. B, 2009, 80(2): 024511
49 Lv B, Deng L, Gooch M, et al. Unusual superconducting state at 49 K in electron-doped CaFe2As2 at ambient pressure[J]. Proc. Natl. Acad. Sci. U.S.A., 2011, 108(38): 15705
50 Rotter M, Tegel M, Johrendt D. Superconductivity at 38 K in the iron arsenide (Ba1 - x K x)Fe2As2[J]. Phys. Rev. Lett., 2008, 101(10): 107006
51 Aswartham S, Abdel-Hafiez M, Bombor D, et al. Hole doping in BaFe2As2: the case of Ba1 - x Na x Fe2As2 single crystals[J]. Phys. Rev. B, 2012, 85(22): 224520
52 Shirage P M, Miyazawa K, Kito H, et al. Superconductivity at 26 K in (Ca1 - x Na x)Fe2As2[J]. Appl. Phys. Express, 2008, 1: 081702
53 Zhao K, Liu Q Q, Wang X C, et al. Superconductivity above 33 K in (Ca1 - x Na x)Fe2As2[J]. J. Phys.: Condens. Matter, 2010, 22(22): 222203
54 Zhao K, Liu Q Q, Wang X C, et al. Doping dependence of the superconductivity of (Ca1 - x Na x)Fe2As2[J]. Phys. Rev. B, 2011, 84(18): 184534
55 Ren Z, Tao Q, Jiang S A, et al. Superconductivity induced by phosphorus doping and its coexistence with ferromagnetism in EuFe2(As0.7P0.3)2[J]. Phys. Rev. Lett., 2009, 102(13): 137002
56 Jiang S A, Xing H, Xuan G, et al. Superconductivity up to 30 K in the vicinity of the quantum critical point in BaFe2(As1 - x P x)2[J]. J. Phys.: Condens. Matter, 2009, 21(38): 382203
57 Kasahara S, Hashimoto K, Okazaki R, et al. Superconductivity induced by isovalent doping in single crystals of BaFe2(As1 - x P x)2[J]. Physica C, 2010, 470: 462
58 Tanatar M A, Torikachvili M S, Thaler A, et al. Effects of isovalent substitution and pressure on the interplane resistivity of single-crystal Ba(Fe1 - x Ru x)2As2[J]. Phys. Rev. B, 2014, 90(10): 104518
59 Shibauchi T, Carrington A, Matsuda Y. A quantum critical point lying beneath the superconducting dome in iron pnictides[J]. Annu. Rev. Condens. Matter Phys., 2014, 5: 113
60 Fernandes R M, Coldea A I, Ding H, et al. Iron pnictides and chalcogenides: a new paradigm for superconductivity[J]. Nature, 2022, 601: 35
[1] 田淞文, 刘丽荣, 田素贵. 一种含Re/Ru镍基单晶合金的蠕变行为及其机理[J]. 材料研究学报, 2024, 38(4): 248-256.
[2] 郑明瑞, 李亚微, 刘静, 王莉, 郑伟, 董加胜, 张健, 楼琅洪. 缺口取向及温度对第三代单晶高温合金DD33热疲劳行为的影响[J]. 材料研究学报, 2024, 38(2): 111-120.
[3] 徐东卫, 王瑞琪, 陈平. 石墨烯基吸波复合材料研究进展[J]. 材料研究学报, 2024, 38(1): 1-13.
[4] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[5] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[6] 张敏, 张思倩, 王栋, 陈立佳. 一种镍基单晶高温合金的蠕变组织损伤对再蠕变行为的影响[J]. 材料研究学报, 2023, 37(6): 417-422.
[7] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[8] 周章瑞, 吕培森, 赵国旗, 张剑, 赵云松, 刘丽荣. 两种“WRe”型低成本第二代镍基单晶高温合金的高温持久变形机制[J]. 材料研究学报, 2023, 37(5): 371-380.
[9] 张英健, 张思倩, 王栋, 张浩宇, 周舸, 陈立佳. 长时热暴露对一种抗热腐蚀单晶高温合金/Pt-Al涂层体系微观组织演化的影响[J]. 材料研究学报, 2023, 37(12): 889-899.
[10] 王胜, 周俏亭, 占慧敏, 陈晶晶. 单晶碳化硅接触中亚表层损伤与破坏机理的原子尺度分析[J]. 材料研究学报, 2023, 37(12): 943-951.
[11] 陈瑞志, 刘丽荣, 郭圣东, 张迈, 卢广先, 李远, 赵云松, 张剑. 一种6Re/3Ru镍基单晶高温合金微观组织的稳定性和高温持久性能[J]. 材料研究学报, 2023, 37(10): 721-730.
[12] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[13] 孔亚非, 罗兴宏, 李洋, 刘实. 重力对镍基单晶高温合金枝晶生长和微观偏析的影响[J]. 材料研究学报, 2023, 37(10): 770-780.
[14] 何禹锋, 王莉, 王栋, 王绍钢, 卢玉章, 谷阿山, 申健, 张健. 热等静压对第三代单晶高温合金DD33显微组织和持久性能的影响[J]. 材料研究学报, 2022, 36(9): 649-659.
[15] 陈晶晶, 邱小林, 李柯, 袁军军, 周丹, 刘亦薇. 磨粒刮擦诱导单晶镍微结构演化与塑性去除行为的纳观分析[J]. 材料研究学报, 2022, 36(7): 511-518.