Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (5): 330-336    DOI: 10.11901/1005.3093.2023.260
  研究论文 本期目录 | 过刊浏览 |
β-In2Se3 堆垛缺陷的电子显微学研究
王强1, 朱鹤雨2,3, 刘志博2,3(), 朱毅2,3, 刘培涛2,3, 任文才2,3
1.沈阳化工大学材料科学与工程学院 沈阳 110142
2.中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
3.中国科学技术大学材料科学与工程学院 沈阳 110016
Electron Microscopy Study of Stacking Defects in β-In2Se3
WANG Qiang1, ZHU Heyu2,3, LIU Zhibo2,3(), ZHU Yi2,3, LIU Peitao2,3, REN Wencai2,3
1.School of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
2.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

王强, 朱鹤雨, 刘志博, 朱毅, 刘培涛, 任文才. β-In2Se3 堆垛缺陷的电子显微学研究[J]. 材料研究学报, 2024, 38(5): 330-336.
Qiang WANG, Heyu ZHU, Zhibo LIU, Yi ZHU, Peitao LIU, Wencai REN. Electron Microscopy Study of Stacking Defects in β-In2Se3[J]. Chinese Journal of Materials Research, 2024, 38(5): 330-336.

全文: PDF(14693 KB)   HTML
摘要: 

基于像差校正扫描透射电子显微学和第一性原理计算,研究了van der Waals(范德瓦尔斯)层状β-In2Se3中堆垛缺陷的原子构型。结果表明,在2H β-In2Se3中存在大量的置换型层错(RSF)和滑移型层错(SSF),发现了一种在热力学上易自发形成的T相滑移型堆垛层错(tSSF);在3R β-In2Se3中只观察到一种能量较高的滑移型层错;2H和3R β-In2Se3以界面连续过渡的方式发生相分离。本文还构建9种β-In2Se3潜在的堆垛层错构型,并计算了相应的堆垛层错能并从能量角度分析了堆垛层错的成因。最后,指出建立分类术语描述类van der Waals层状材料堆垛层错的必要性。

关键词 无机非金属材料堆垛层错β-In2Se3HAADF-STEM第一性原理计算    
Abstract

In2Se3 has recently received much attention because of its excellent ferroelectric, thermoelectric, and photoelectric properties. However, the stacking defects, known as an important factor affecting the properties of van der Waals layered materials, have not yet been explored for In2Se3. Herein, the atomic configurations of stacking defects in van der Waals layered β-In2Se3 were studied by means of aberration-corrected scanning transmission electron microscopy combined with first-principles calculations. There are a significant amount of replacement-type stacking faults (RSFs) and slip-type stacking faults (SSFs) in 2H β-In2Se3. Moreover, the 1T phase slip-type stacking fault (tSSF), which is thermodynamically prone to spontaneous formation, was observed in 2H β-In2Se3. However, only the SSF was observed as a high energy configuration in 3R β-In2Se3. The phase separation occurred between 2H and 3R β-In2Se3 with a coherent stacking interface. In addition, nine potential stacking fault configurations of β-In2Se3 were constructed, the corresponding stacking fault energies were calculated, and the causes of stacking faults were analyzed from an energetic perspective. Finally, the need for a classification term describing the stacking faults in van der Waals-like layered materials is pointed out.

Key wordsinorganic nonmetallic materials    stacking fault    β-In2Se3    HAADF-STEM    first-principles calculations
收稿日期: 2023-05-15     
ZTFLH:  V254.2  
基金资助:国家自然科学基金(52272050);中国科学院青年创新促进会(2021000185);沈阳材料科学国家研究中心青年人才项目(2019000191)
通讯作者: 刘志博,副研究员,zbliu@imr.ac.cn,研究方向为二维材料电子显微学
Corresponding author: LIU Zhibo, Tel: 18809896512, E-mail: zbliu@imr.ac.cn
作者简介: 王 强,男,1997年生,硕士生
图1  2H和3R β-In2Se3的本征堆垛结构
图2  2H β-In2Se3的堆垛层错结构
图3  3R β-In2Se3的堆垛层错结构
图4  2H和3R β-In2Se3的界面结构
ConfigurationStacking faultc / nmnSFE / mJ·m-2
A¯CA¯CA¯CA¯CA¯CA¯C2H β-In2Se311.057--
A¯CA¯C|CA¯CA¯CA¯|A¯CtISF11.067299.9
A¯CA¯CA¯|B|A¯CA¯CA¯CRSF11.05426.3
A¯CA¯C|B¯AB¯AB¯|CA¯CSSF11.056211.3
A¯CA¯C|B|A¯CA¯C|B|A¯CISF11.0204-13.3
BC¯BC¯BC¯|A¯CA¯CA¯C|tSSF11.0242-28.8
CBACBACBACBA3R β-In2Se310.935--
CBAC|CBAC|CBAC|SSF(tISF)10.9993124.7
CBA|B¯|CBA|B¯|CBA|B¯|rISF10.984641.2
AAAAAAAAAAAA1T β-In2Se311.234--
AAAAAA|B¯|AAAAArISF11.2342-49.2
AAAA|CCCC|BBBB|SSF11.1573-107.5
表1  β-In2Se3的层错构型及其对应的堆垛层错能
1 Chen Y, Lai Z, Zhang X, et al. Phase engineering of nanomaterials[J]. Nat. Rev. Chem., 2020, 4(5): 243
doi: 10.1038/s41570-020-0173-4 pmid: 37127983
2 Latil S, Henrard L. Charge carriers in few-layer graphene films[J]. Phys. Rev. Lett., 2006, 97(3): 036803
3 Banerjee A, Bridges C A, Yan J Q, et al. Proximate Kitaev quantum spin liquid behaviour in a honeycomb magnet[J]. Nat. Mater., 2016, 15(7): 733
doi: 10.1038/nmat4604 pmid: 27043779
4 Craciun M F, Russo S, Yamamoto M, et al. Trilayer graphene is a semimetal with a gate-tunable band overlap[J]. Nat. Nanotechnol., 2009, 4(6): 383
doi: 10.1038/nnano.2009.89 pmid: 19498401
5 Bao W, Jing L, Velasco J, et al. Stacking-dependent band gap and quantum transport in trilayer graphene[J]. Nat. Phys., 2011, 7(12): 948
6 Zhang X, Nan H, Xiao S, et al. Transition metal dichalcogenides bilayer single crystals by reverse-flow chemical vapor epitaxy[J]. Nat. Commun., 2019, 10(1): 598
doi: 10.1038/s41467-019-08468-8 pmid: 30723204
7 Lei S Y, Wang H, Huang L, et al. Stacking fault enriching the electronic and transport properties of few-layer phosphorenes and black phosphorus[J]. Nano Lett., 2016, 16(2): 1317
doi: 10.1021/acs.nanolett.5b04719 pmid: 26799596
8 Sutter E, Komsa H P, Puretzky A A, et al. Stacking fault induced symmetry breaking in van der waalss nanowires[J]. ACS Nano, 2022, 16(12): 21199
doi: 10.1021/acsnano.2c09172 pmid: 36413759
9 Klein D R, Macneill D, Song Q, et al. Enhancement of interlayer exchange in an ultrathin two-dimensional magnet[J]. Nat. Phys., 2019, 15(12): 1255
10 Li J, Li H, Niu X, et al. Low-dimensional In2Se3 compounds: from material preparations to device applications[J]. ACS Nano, 2021, 15(12): 18683
11 Dong J Y. Controllable growth and characterization of polymorphic layered In2Se3 and its heterostructure[D]. Qinhuangdao: Yanshan University, 2021
11 董继宇. 多晶型层状In2Se3及其异质结的可控制备和表征[D]. 秦皇岛: 燕山大学, 2021
12 Lv B, Yan Z, Xue W, et al. Layer-dependent ferroelectricity in 2H-stacked few-layer alpha-In2Se3[J]. Mater. Horiz., 2021, 8(5): 1472
13 Xiao J, Zhu H, Wang Y, et al. Intrinsic two-dimensional ferroelectricity with dipole locking[J]. Phys. Rev. Lett., 2018, 120(22): 227601
14 Cui C, Hu W J, Yan X, et al. Intercorrelated in-plane and out-of-plane ferroelectricity in ultrathin two-dimensional layered semiconductor In2Se3[J]. Nano Lett., 2018, 18(2): 1253
15 Ding W, Zhu J, Wang Z, et al. Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waalss materials[J]. Nat. Commun., 2017, 8: 14956
16 Wang Z, Li Y, Zeng H L, et al. Research progress of two-dimensional ferroelectric material of In2Se3 [J]. J. Xiangtan Univ (Nat. Sci. Ed.)., 2019, 41(05): 40
16 王 喆, 李 悦, 曾华凌 等. 二维铁电材料In2Se3的研究进展[J]. 湘潭大学学报(自然科学版), 2019, 41(05): 40
17 Xue F, Zhang J, Hu W, et al. Multidirection piezoelectricity in mono- and multilayered hexagonal alpha-In2Se3[J]. ACS Nano, 2018, 12(5): 4976
18 Jiang J, Zhang L, Ming C, et al. Giant pyroelectricity in nanomembranes[J]. Nature, 2022, 607(7919): 480
19 Mech R K, Mohta N, Chatterjee A, et al. High responsivity and photovoltaic effect based on vertical transport in multilayer α‐In2Se3[J]. Phys. Status Solidi (A), 2020, 217(5): 1900932
20 Wan S, Li Y, Li W, et al. Nonvolatile ferroelectric memory effect in ultrathin α-In2Se3[J]. Adv. Funct. Mater., 2019, 29(20): 1902332
21 Si M, Saha A K, Gao S, et al. A ferroelectric semiconductor field-effect transistor[J]. Nat. Electron., 2019, 2(12): 580
22 Si M, Zhang Z, Chang S C, et al. Asymmetric metal/alpha-In2Se3/Si crossbar ferroelectric semiconductor junction[J]. ACS Nano, 2021, 15(3): 5689
23 Wang Q, Yang L, Zhou S, et al. Phase-defined van der waals schottky junctions with significantly enhanced thermoelectric properties[J]. J. Phys. Chem. Lett., 2017, 8(13): 2887
doi: 10.1021/acs.jpclett.7b01089 pmid: 28593766
24 Feng W, Gao F, Hu Y, et al. Phase-engineering-driven enhanced electronic and optoelectronic performance of multilayer In2Se3 nanosheets[J]. ACS Appl. Mater. Inter., 2018, 10(33): 27584
25 Almeida G, Dogan S, Bertoni G, et al. Colloidal monolayer beta-In2Se3 nanosheets with high photoresponsivity[J]. J. Am. Chem. Soc., 2017, 139(8): 3005
26 Balakrishnan N, Staddon C R, Smith E F, et al. Quantum confinement and photoresponsivity of β-In2Se3 nanosheets grown by physical vapour transport[J]. 2D Mater., 2016, 3(2): 025030
27 Xu C, Mao J, Guo X, et al. Two-dimensional ferroelasticity in van der waalss beta'-In2Se3[J]. Nat. Commun., 2021, 12(1): 3665
28 Xu C, Chen Y, Cai X, et al. Two-dimensional antiferroelectricity in nanostripe-ordered In2Se3[J]. Phys. Rev. Lett., 2020, 125(4): 047601
29 Wang D, Luo F, Lu M, et al. Chemical vapor transport reactions for synthesizing layered materials and their 2D counterparts[J]. Small, 2019, 15 (40): 1804404
30 Kresse G and Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Comput. Mater. Sci., 1996, 6(1): 15
31 Kresse G and Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J], Phys. Rev. B, 1996, 54(16): 11169
doi: 10.1103/physrevb.54.11169 pmid: 9984901
32 Blöchl P E. Projector augmented-wave method[J]. Phys. Rev. B, 1994, 50(24): 17953
doi: 10.1103/physrevb.50.17953 pmid: 9976227
33 Perdew J P, Burke K and Ernzerhof M. Generalized gradient approximation made simple[J]. Phys. Rev. Lett., 1996, 77(18): 3865
doi: 10.1103/PhysRevLett.77.3865 pmid: 10062328
34 Grimme S, Ehrlich S and Goerigk L. Effect of the damping function in dispersion corrected density functional theory[J]. J. Comput. Chem., 2011, 32(7), 1456
doi: 10.1002/jcc.21759 pmid: 21370243
35 Grimme S, Antony J, Ehrlich S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J]. J. Chem. Phys., 2010, 132 (15): 154104
36 Pennycook S J. Z-contrast stem for materials science[J]. Ultramicroscopy, 1989, 30(1): 58
37 Vítek V. Intrinsic stacking faults in body-centred cubic crystals[J]. Philos. Mag., 1968, 18(154): 773
38 Hull D and Bacon D J. Introduction to Dislocations (5th ed.)[M]. Oxford: Butterworth-Heinemann, 2011
39 Edalati K, Horita Z. High-pressure torsion of pure metals: Influence of atomic bond parameters and stacking fault energy on grain size and correlation with hardness[J]. Acta Mater., 2011, 59(17): 6831
40 Hirth J P, Lothe J. Theory of Dislocations[M]. New York: Wiley, 1982
41 Mio A M, Konze P M, Meledin A, et al. Impact of bonding on the stacking defects in layered chalcogenides[J]. Adv. Funct. Mater., 2019, 29(37): 1902332
[1] 王琰, 张昊, 常娜, 王海涛. 酸-碱改性粉煤灰吸附剂的制备及其对染料的去除性能[J]. 材料研究学报, 2024, 38(5): 379-389.
[2] 谭依玲, 李诗纯, 孙杰. 金属有机框架多孔玻璃agSALEM-2的制备[J]. 材料研究学报, 2024, 38(5): 373-378.
[3] 徐汇, 张培垣, 徐娜娜, 刘涛, 张晓山, 王兵, 王应德. 耐高温SiO2/ZrO2 纳米纤维膜的力学和隔热性能[J]. 材料研究学报, 2024, 38(5): 365-372.
[4] 李婧, 许英朝, 范浩爽, 陆逸, 李莉, 张贤玉. 新型双钙钛矿Ca2GdSbO6:Sm3+ 橙红色荧光粉的制备及其发光性能[J]. 材料研究学报, 2024, 38(4): 288-296.
[5] 刘锐, 张鼎冬, 张辉, 任文才, 杜金红. 空穴传输层的厚度对石墨烯基有机发光二极管性能的影响[J]. 材料研究学报, 2024, 38(3): 168-176.
[6] 周立臣. 等离子体氟改性TiO2 催化剂的制备及其光催化性能[J]. 材料研究学报, 2024, 38(2): 141-150.
[7] 李博森, 廖忠新, 高大强. BNZ组分对KNN基无铅压电陶瓷结构和性能的影响[J]. 材料研究学报, 2024, 38(1): 51-60.
[8] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[9] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[10] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[11] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[12] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[13] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[14] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[15] 王胜, 周俏亭, 占慧敏, 陈晶晶. 单晶碳化硅接触中亚表层损伤与破坏机理的原子尺度分析[J]. 材料研究学报, 2023, 37(12): 943-951.