Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (3): 177-186    DOI: 10.11901/1005.3093.2022.582
  研究论文 本期目录 | 过刊浏览 |
CaAg的含量对可降解Zn-Li-Ca-Ag合金的组织和性能的影响
闫俊竹1,2, 高明2, 于晓明1, 谭丽丽2()
1.沈阳理工大学材料科学与工程学院 沈阳 110159
2.中国科学院金属研究所 沈阳 110016
Effect of Ca and Ag Content on Microstructure and Properties of Biodegradable Alloy Zn-Li-Ca-Ag
YAN Junzhu1,2, GAO Ming2, YU Xiaoming1, TAN Lili2()
1.College of Materials Science and Engineering, Shenyang Ligong University, Shenyang 110159, China
2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

闫俊竹, 高明, 于晓明, 谭丽丽. CaAg的含量对可降解Zn-Li-Ca-Ag合金的组织和性能的影响[J]. 材料研究学报, 2024, 38(3): 177-186.
Junzhu YAN, Ming GAO, Xiaoming YU, Lili TAN. Effect of Ca and Ag Content on Microstructure and Properties of Biodegradable Alloy Zn-Li-Ca-Ag[J]. Chinese Journal of Materials Research, 2024, 38(3): 177-186.

全文: PDF(16275 KB)   HTML
摘要: 

制备可降解Zn-Li-Ca-Ag合金,使用光学显微镜(OM)、扫描电镜(SEM)、万能试验机和电化学测试等手段研究了Ca和Ag的含量对这种合金的微观组织、力学性能和耐蚀性能的影响。结果表明:Zn-Li-Ca-Ag合金的微观组织由树枝晶组成,Ca通过第二相强化使锌合金的强度提高,Ag细化枝晶使锌合金的塑性提高。Zn-0.8Li-0.1Ca-0.2Ag合金的抗拉强度达到了186 MPa。Ca和Ag都能提高锌合金的耐蚀性能。

关键词 生物材料锌合金力学性能耐蚀性能    
Abstract

Due to the suitable degradation rate and good biocompatibility, Zn-alloys have great potential as biomedical degradable materials. However, the low mechanical properties of pure Zn limit its development as a biomedical material. In this paper, the known degradable Zn-Li-Ca-Ag alloy was further alloyed with different amount of Ca and Ag. The microstructure, mechanical properties and corrosion resistance of the prepared Zn-Li-Ca-Ag alloys were characterized by means of optical microscopy (OM), scanning electron microscopy (SEM), universal testing machine and electrochemical tests. The results showed that the microstructure of the Zn-Li-Ca-Ag alloy was composed of dendrites. The Ca addition can improve the strength of the Zn alloy by second-phase strengthening, and the Ag addition has a positive influence on the plasticity of the Zn alloy by refining the size of the dendrites. Ca has stronger influence on the enhancement of the alloy strength rather than Ag, and amoung others, the Zn-0.8Li-0.1Ca-0.2Ag alloy exhibits the highest tensile strength (186 MPa). The co-addition of Ca and Ag can also improve the corrosion resistance of Zn alloy.

Key wordsbiomaterials    zinc alloy    mechanical properties    corrosion resistance
收稿日期: 2022-11-03     
ZTFLH:  TG146  
基金资助:国家重点研发计划(2020YFC1107501);国家自然科学基金(51971222);STS项目(20201600200042);东莞市创新研究团队计划和辽宁省应用基础研究计划(2022020347-JH2/1013)
通讯作者: 谭丽丽,研究员,lltan@imr.ac.cn,研究方向为生物医用可降解金属材料及器械
Corresponding author: TAN Lili, Tel:(024)23971059, E-mail: lltan@imr.ac.cn
作者简介: 闫俊竹,女,1998年生,硕士
AlloyLiCaAgZn
Zn-0.8Li-0.2Ag0.7400.2Bal.
Zn-0.8Li-0.05Ca-0.2Ag0.730.0480.22Bal.
Zn-0.8Li-0.1Ca-0.2Ag0.720.0960.2Bal.
Zn-0.8Li-0.05Ca0.730.0510Bal.
Zn-0.8Li-0.05Ca-0.5Ag0.720.0650.53Bal.
Zn-0.8Li-0.05Ca-1Ag0.740.0440.98Bal.
表1  Zn-Li-Ca-Ag合金的化学成分
CompositionContent / g·L-1
NaCl8.00
KCl0.40
MgSO4·7H2O0.06
CaCl20.14
Na2HPO4·12H2O0.06
KH2PO40.06
MgCl20.10
NaHCO30.35
表2  Hank's溶液的化学成分
图1  铸态Zn-0.8Li-xCa-0.2Ag合金和Zn-0.8Li-0.05Ca-xAg合金的微观组织
图2  铸态Zn-0.8Li-xCa-0.2Ag和Zn-0.8Li-0.05Ca-xAg合金中第二相的分布
PointElement / mass fraction, %
ZnCaAg
198.7101.29
295.094.910
表3  图2中标记位置的能谱结果
图3  铸态Zn-0.8Li-xCa-0.2Ag合金和Zn-0.8Li-0.05Ca-xAg合金的显微硬度
图4  铸态Zn-0.8Li-xCa-0.2Ag合金(x = 0, 0.05, 0.1%) 和Zn-0.8Li-0.05Ca-xAg合金(x = 0, 0.05, 0.1%)的应力应变曲线和室温拉伸力学性能
图5  铸态Zn-0.8Li-xCa-0.2Ag和Zn-0.8Li-0.05Ca-xAg合金的断口形貌
图6  铸态Zn-0.8Li-xCa-0.2Ag合金(x = 0, 0.05, 0.1, mass fraction / %)和Zn-0.8Li-0.05Ca-xAg合金(x = 0, 0.05, 0.1, mass fraction / %)在Hank's溶液中浸泡21 d的pH值的变化曲线和腐蚀速率
图7  铸态Zn-0.8Li-xCa-0.2Ag和Zn-0.8Li-0.05Ca-xAg合金在Hank's溶液中浸泡7 d后腐蚀产物的形貌
ElementPoint
12
C0%0.82%
O36.00%60.03%
Na7.94%7.76%
P12.63%5.10%
K0.42%0. 17%
Ca4.55%0.70%
Zn38.47%25.42%
Total100.00%100%
表4  图7中标记位置的能谱结果
图8  铸态Zn-0.8Li-xCa-0.2Ag和Zn-0.8Li-0.05Ca-xAg合金在Hank's溶液中浸泡7 d后腐蚀产物的XRD谱
图9  铸态Zn-0.8Li-xCa-0.2Ag和Zn-0.8Li-0.05Ca-xAg合金在Hank's溶液中浸泡21 d去除腐蚀产物后的形貌
图10  Zn-0.8Li-xCa-0.2Ag合金和Zn-0.8Li-0.05Ca-xAg合金的动电位极化曲线,Nyquist曲线和等效拟合电路
Alloys

Corrosion potential

(Ecorr) / V vs. SCE

Corrosion current density

(Icorr) / μA·cm-2

Corrosion rate

(Vcorr) / mm·a-1

Zn-0.8Li-0.2Ag-1.2406.3302.820
Zn-0.8Li-0.05Ca-0.2Ag-1.2503.1301.396
Zn-0.8Li-0.1Ca-0.2Ag-1.2705.2502.341
Zn-0.8Li-0.05Ca-1.1905.4203.480
Zn-0.8Li-0.05Ca-0.5Ag-1.29012.207.838
Zn-0.8Li-0.05Ca-1Ag-1.2207.5804.866
表5  极化曲线的拟合结果
图11  Zn-0.8Li-xCa-0.2Ag和Zn-0.8Li-0.05Ca-xAg合金在Hank's中的腐蚀机制示意图
1 Bowen P K, Drelich J, Goldman J. Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents [J]. Adv. Mater., 2013, 25(18): 2577
doi: 10.1002/adma.v25.18
2 Ye L, Liu H, Sun C, et al. Achieving high strength, excellent ductility, and suitable biodegradability in a Zn-0.1Mg alloy using room-temperature ECAP [J]. J. Alloys Compd., 2022, 926: 166906
doi: 10.1016/j.jallcom.2022.166906
3 Vidhish N M, Narasaiah N, Chakravarthy P, et al. Hot-extrusion behavior of biodegradable Zn-Mg alloys [J]. Mater. Today: Proc., 2022, 56: 1432
4 Dai Y L, Zhang Y, Liu H, et al. Mechanical strengthening mechanism of Zn-Li alloy and its mini tube as potential absorbable stent material [J]. Mater. Lett., 2019, 235: 220
doi: 10.1016/j.matlet.2018.10.001
5 Guo H, Hu J L, Shen Z Q, et al. In vitro and in vivo studies of biodegradable Zn-Li-Mn alloy staples designed for gastrointestinal anastomosis [J]. Acta Biomater., 2021, 121: 713
doi: 10.1016/j.actbio.2020.12.017 pmid: 33321221
6 Lin J X, Tong X, Wang K, et al. Biodegradable Zn-3Cu and Zn-3Cu-0.2Ti alloys with ultrahigh ductility and antibacterial ability for orthopedic applications [J]. J. Mater. Sci. Technol., 2021, 68: 76
doi: 10.1016/j.jmst.2020.06.052
7 Zhang W T, Li P, shen G, et al. Appropriately adapted properties of hot-extruded Zn-0.5Cu-xFe alloys aimed for biodegradable guided bone regeneration membrane application [J]. Bioact. Mater., 2021, 6(4): 975
doi: 10.1016/j.bioactmat.2020.09.019 pmid: 33102940
8 Li H F, Yang H T, Zheng Y F, et al. Design and characterizations of novel biodegradable ternary Zn-based alloys with IIA nutrient alloying elements Mg, Ca and Sr [J]. Mater. Design, 2015, 83: 95
9 Jia B, Yang H T, Zhang Z C, et al. Biodegradable Zn-Sr alloy for bone regeneration in rat femoral condyle defect model: In vitro and in vivo studies [J]. Bioact. Mater., 2021, 6(6): 1588
doi: 10.1016/j.bioactmat.2020.11.007 pmid: 33294736
10 Wątroba M, Bednarczyk W, Kawałko J, et al. Design of novel Zn-Ag-Zr alloy with enhanced strength as a potential biodegradable implant material [J]. Mater. Design, 2019, 183: 108154
11 Jia B, Yang H T, Han Y, et al. In vitro and in vivo studies of Zn-Mn biodegradable metals designed for orthopedic applications [J]. Acta. Biomater., 2020, 108: 358
doi: S1742-7061(20)30141-0 pmid: 32165194
12 Shi Z Z, Gao X X, Zhang H J, et al. Design biodegradable Zn alloys: Second phases and their significant influences on alloy properties [J]. Bioact. Mater., 2020, 5(2): 210
doi: 10.1016/j.bioactmat.2020.02.010 pmid: 32123774
13 Pan H C, Qin G W, Ren Y P, et al. Achieving high strength in indirectly-extruded binary Mg-Ca alloy containing Guinier-Preston zones [J]. J. Alloys Compd., 2015, 630: 272
doi: 10.1016/j.jallcom.2015.01.068
14 Ramya M, Ravi K R. Biodegradable nanocrystalline Mg-Zn-Ca-Ag alloys as suitable materials for orthopedic implants [J]. Mater. Today: Proc., 2022, 58: 721
15 Simchi A, Tamjid E, Pishbin F, et al. Recent progress in inorganic and composite coatings with bactericidal capability for orthopaedic applications [J]. Nanomed. Nanotechnol., 2011, 7(1): 22
doi: 10.1016/j.nano.2010.10.005
16 Baba K, Hatada R, Flege S, et al. Preparation and antibacterial properties of Ag-containing diamond-like carbon films prepared by a combination of magnetron sputtering and plasma source ion implantation [J]. Vac., 2013, 89: 179
doi: 10.1016/j.vacuum.2012.04.015
17 Shao W, Zhao Q. Influence of reducers on nanostructure and surface energy of silver coatings and bacterial adhesion [J]. Surf. Coat. Tech., 2010, 204(8): 1288
doi: 10.1016/j.surfcoat.2009.10.015
18 Liu Z L, Qiu D, Wang F, et al. The grain refining mechanism of cast zinc through silver inoculation [J]. Acta. Mater., 2014, 79: 315
doi: 10.1016/j.actamat.2014.07.026
19 Pinc J, Čapek J, Kubásek J, et al. Microstructure and mechanical properties of the potentially biodegradable ternary system Zn-Mg0.8-Ca0.2 [J]. Procedia Struct., 2019, 23: 21
20 Huang H, Liu H, Wang L S, et al. Revealing the effect of minor Ca and Sr additions on microstructure evolution and mechanical properties of Zn-0.6Mg alloy during multi-pass equal channel angular pressing [J]. J. Alloys Compd., 2020, 844: 155923
doi: 10.1016/j.jallcom.2020.155923
21 Shi Z Z, Li H Y, Xu J Y, et al. Microstructure evolution of a high-strength low-alloy Zn-Mn-Ca alloy through casting, hot extrusion and warm caliber rolling [J]. Mater. Sci. Eng. A, 2020, 771: 138626
doi: 10.1016/j.msea.2019.138626
22 Zou Y L, Chen X, Chen B. Effects of Ca concentration on degradation behavior of Zn-xCa alloys in Hank's solution [J]. Mater. Lett., 2018, 218: 193
doi: 10.1016/j.matlet.2018.02.018
23 Gong H B, Wang K, Strich R, et al. In vitro biodegradation behavior, propertiesmechanical, and cytotoxicity of biodegradable Zn-Mg alloy [J]. J. Biomed. Mater. Res. B, 2015, 103(8): 1632
doi: 10.1002/jbm.b.v103.8
[1] 徐龙, 李继文, 崔传禹, 卢祺, 杨浩, 赵聪聪. 冷喷涂Zn15Al合金涂层在NaCl溶液中的腐蚀行为和防护机制[J]. 材料研究学报, 2024, 38(3): 208-220.
[2] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[4] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[5] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[6] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[7] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[8] 史畅, 杜宇航, 赖利民, 肖思明, 郭宁, 郭胜锋. CrTaTi难熔中熵合金的力学性能和抗氧化性能[J]. 材料研究学报, 2023, 37(6): 443-452.
[9] 雷志国, 文胜平, 黄晖, 张二庆, 熊湘沅, 聂祚仁. 冷轧变形和添加SiAl-2Mg-0.8Cu(-Si)合金的组织和力学性能的影响[J]. 材料研究学报, 2023, 37(6): 463-471.
[10] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[11] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[12] 陈志鹏, 朱智浩, 宋梦凡, 张爽, 刘田雨, 董闯. 基于Ti-6Al-4V团簇式设计的超高强Ti-Al-V-Mo-Nb-Zr合金[J]. 材料研究学报, 2023, 37(4): 308-314.
[13] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[14] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[15] 赵云梅, 赵洪泽, 吴杰, 田晓生, 徐磊. 热处理对粉末冶金Inconel 718合金TIG焊接的组织和性能的影响[J]. 材料研究学报, 2023, 37(3): 184-192.