Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (3): 187-196    DOI: 10.11901/1005.3093.2023.130
  研究论文 本期目录 | 过刊浏览 |
Mg-8Zn-4Al-0.5Cu-0.5Mn-xLi高模量铸造镁合金的组织和性能
刘晨野1,2, 罗天骄1(), 李应举1, 冯小辉1, 黄秋燕1, 郑策1, 朱成1, 杨院生1
1.中国科学院金属研究所 沈阳 110016
2.中国科学技术大学材料科学与工程学院 沈阳 110016
Microstructure and Properties of As-cast Mg-8Zn-4Al-0.5Cu-0.5Mn-xLi Alloys with High Modulus
LIU Chenye1,2, LUO Tianjiao1(), LI Yingju1, FENG Xiaohui1, HUANG Qiuyan1, ZHENG Ce1, ZHU Cheng1, YANG Yuansheng1
1.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

刘晨野, 罗天骄, 李应举, 冯小辉, 黄秋燕, 郑策, 朱成, 杨院生. Mg-8Zn-4Al-0.5Cu-0.5Mn-xLi高模量铸造镁合金的组织和性能[J]. 材料研究学报, 2024, 38(3): 187-196.
Chenye LIU, Tianjiao LUO, Yingju LI, Xiaohui FENG, Qiuyan HUANG, Ce ZHENG, Cheng ZHU, Yuansheng YANG. Microstructure and Properties of As-cast Mg-8Zn-4Al-0.5Cu-0.5Mn-xLi Alloys with High Modulus[J]. Chinese Journal of Materials Research, 2024, 38(3): 187-196.

全文: PDF(30285 KB)   HTML
摘要: 

设计和制备Mg-8Zn-4Al-0.5Cu-0.5Mn-xLi (x = 0,3,5,7)(%,质量分数)系列高比模量的镁合金,研究了它的组织和性能。Li含量为3.14%和5.37%的两种镁合金,其基体为单相α-Mg,在晶界析出骨骼状Mg32(Al, Zn)49相,在晶粒内有颗粒状Mg5Al2Zn2相和Al2Mn相;Li含量为7.57%的合金,其基体主要为双相组织α-Mg + β-Li。添加Li元素后在晶界附近生成的共晶组织由α-Mg相和层片状AlLi相组成,并随着Li含量的提高层片状AlLi相的含量随之提高。随着Li含量的提高,合金的屈服强度呈逐渐提高的趋势,而抗拉强度基本上不变,合金的弹性模量呈现先提高后降低的趋势。铸态合金ZA84-5Li的弹性模量可达51.89 GPa,比纯Mg的弹性模量高7 GPa,但是其力学性能基本不变,屈服强度为141 MPa,抗拉强度为189 MPa,密度为1.71 g/cm3

关键词 金属材料镁合金第二相强化显微组织弹性模量    
Abstract

Aiming at the demand of high stiffness light metal structure materials, high specific modulus Mg-alloys Mg-8Zn-4Al-0.5Cu-0.5Mn-xLi (x = 0, 3, 5, 7) (%, mass fraction) (namely ZA84-xLi) were designed and prepared, as well as and then optimized. When the Li content in the alloy is 3.14% and 5.37%, the alloy matrix is composed mainly of single-phase α-Mg, while the skeletal-like Mg32(Al, Zn)49 phase is precipitated near grain boundaries, and there is a granular-like Mg5Al2Zn2 phase and Al2Mn phase inside the grain; when the Li content is 7.57%, the alloy matrix is ​​mainly a dual-phase structure α-Mg + β-Li. After the addition of Li, many eutectic structures are formed near the grain boundaries, which are composed of α-Mg phase and lamellar-like AlLi phase, and with the increase of Li content, the amount of lamellar-like AlLi phase also gradually increases. The yield strength of the alloy increases gradually with the increase of Li content, while the tensile strength remains basically unchanged. The elastic modulus of the alloy increases first and then decreases with the increase of Li content. For the as-cast ZA84-5Li, the elastic modulus can reach 51.89 GPa, which is 7 GPa higher than that of pure Mg, while the mechanical properties of the alloy basically keeps unchanged. Namely, the yield strength, tensile strength and density is 141 MPa, 189 MPa and 1.71 g/cm3 respectively for the cast alloy.

Key wordsmetallic materials    magnesium alloy    second phases reinforcement    microstructure    elastic modulus
收稿日期: 2023-02-15     
ZTFLH:  TG146.22  
基金资助:国家重点研发计划(2021YFB3701100)
通讯作者: 罗天骄,副研究员,tjluo@imr.ac.cn,研究方向为新型金属材料制备及其性能
Corresponding author: LUO Tianjiao, Tel:(024)23971109,13514252330, E-mail: tjluo@imr.ac.cn
作者简介: 刘晨野,男,1995年生,硕士生
AlloysZnAlCuMnLiMg
ZA84-0Li8.634.250.560.57-Bal.
ZA84-3Li8.244.240.550.443.14Bal.
ZA84-5Li8.094.220.520.455.37Bal.
ZA84-7Li8.734.330.530.147.57Bal.
表1  ZA84-xLi合金的化学成分
图1  ZA84-xLi合金的XRD谱
图2  ZA84-xLi合金金相组织
图3  ZA84-xLi合金的平均晶粒尺寸
图4  ZA84-xLi合金扫描照片
图5  ZA84-xLi合金中第二相的含量
图6  ZA84-5Li合金的能谱分析
图7  ZA84-5Li合金的二次离子质谱
图8  ZA84-3Li合金透射分析
图9  ZA84-xLi合金的密度
图10  ZA84-xLi合金的硬度
图11  ZA84-xLi合金的拉伸性能
图12  ZA84-xLi合金的拉伸断口纵剖面金相照片
图13  ZA84-xLi合金的拉伸断口形貌照片
图14  ZA84-xLi合金的弹性模量
AlloysElastic modulus / GPa
α-Mgβ-LiGrain boundary phase
ZA84-0Li49.57-50.30
ZA84-3Li53.03-53.12
ZA84-5Li54.99-57.18
ZA84-7Li56.9669.10-
表2  ZA84-xLi合金中的基体和晶界第二相弹性模量
图15  ZA84-xLi合金的纳米压痕分析
1 Wu R Z, Yan Y, Wang G, et al. Recent progress in magnesium-lithium alloys [J]. Int. Mater. Rev., 2014, 60(2): 65
doi: 10.1179/1743280414Y.0000000044
2 Ding H B, Liu Q, Zhou H T, et al. Effect of thermal-mechanical processing on microstructure and mechanical properties of duplex-phase Mg-8Li-3Al-0.4Y alloy [J]. T. Nonferr. Metal. Soc., 2017, 27(12): 2587
doi: 10.1016/S1003-6326(17)60286-3
3 Ji Q, Wang Y, Wu R Z, et al. High specific strength Mg-Li-Zn-Er alloy processed by multi deformation processes [J]. Mater. Charact., 2020, 160: 110
4 Zhang X S, Chen Y J, Hu J L. Recent advances in the development of aerospace materials [J]. Prog. Aerosp. Sci., 2018, 97: 22
doi: 10.1016/j.paerosci.2018.01.001
5 Frankel G S. Magnesium alloys: Ready for the road [J]. Nat. Mater., 2015, 14(12): 1189
doi: 10.1038/nmat4453 pmid: 26480230
6 Chen X Y, Zhang Y, Cong M Q, et al. Effect of Sn content on microstructure and tensile properties of as-cast and as-extruded Mg-8Li-3Al-(1, 2, 3)Sn alloys [J]. T. Nonferr. Metal. Soc., 2020, 30(8): 2079
doi: 10.1016/S1003-6326(20)65362-6
7 Villuendas A, Jorba J, Roca A. The role of precipitates in the behavior of Young's modulus in aluminum alloys [J]. Metall. Mater. Trans. A, 2014, 45(9): 3857
doi: 10.1007/s11661-014-2328-8
8 Huang W, Li D. Effects of isothermal heat-treatment at 300oC on microstructure and mechanical properties of AZ91D die cast magnesium alloy [J]. Trans. Mater. Heat Treat., 2006, (2): 37
8 黄 巍, 李 荻. 300℃等温处理时间对AZ91D压铸镁合金组织和性能的影响 [J]. 材料热处理学报, 2006, (2): 37
9 Wang C Y, Wu K, Wang J J, et al. A study of microstructures and properties of extruded MB15 magnesium alloy [J]. J. Heilongjiang Inst. Techn., 2013, 27(4): 68
9 王春艳, 吴 昆, 王佳杰 等. 挤压态MB15镁合金的显微组织与力学性能研究 [J]. 黑龙江工程学院学报(自然科学版), 2013, 27(4): 68
10 Xi Y L, Zhang W X, Chai D L, et al. Fabricating process and mechanical properties of SiC particulates-reinforced magnesium matrix composites by powder metallurgy [J]. Hot Work. Techn., 2001, 5: 24
10 郗雨林, 张文兴, 柴东琅 等. 粉末冶金法制备SiC颗粒增强镁基复合材料工艺及性能的研究 [J]. 热加工工艺, 2001, 5: 24
11 Li J G. Study on the interfacial and hybrid behaviors of magnesium matrix composites reinforced with magnesium borate whisker [D]. Shanghai: Shanghai Jiao Tong University, 2013
11 李建国. 硼酸镁晶须增强镁基复合材料界面及混杂行为研究 [D]. 上海: 上海交通大学, 2013
12 Zhang X M, Hu J L, Ye L Y, et al. Effects of Si addition on microstructure and mechanical properties of Mg-8Gd-4Y-Nd-Zr alloy [J]. Mater. Design, 2013, 43: 74
doi: 10.1016/j.matdes.2012.06.022
13 Tu T, Chen X H, Zhao C Y, et al. A simultaneous increase of elastic modulus and ductility by Al and Li additions in Mg-Gd-Zn-Zr-Ag alloy [J]. Mater. Sci. Eng. A, 2020, 771: 138576
doi: 10.1016/j.msea.2019.138576
14 Zhao D, Chen X H, Yuan Y, et al. Development of a novel Mg-Y-Zn-Al-Li alloy with high elastic modulus and damping capacity [J]. Mater. Sci. Eng. A, 2020, 790: 139744
doi: 10.1016/j.msea.2020.139744
15 Shi H L, Xu C, Hu X S, et al. Improving the Young's modulus of Mg via alloying and compositing-A short review [J]. J. Magnesium Alloy., 2022, 10(8): 2009
doi: 10.1016/j.jma.2022.07.011
16 Yang M B, Zhu Y, Pan F S, et al. Effects of Minor Sr on As-Cast Microstructure and Mechanical Properties of ZA84 Magnesium Alloy [J]. T. Nonferr. Metal. Soc., 2010, 20: s306
doi: 10.1016/S1003-6326(10)60488-8
17 Yuan G Y, Kato H, Amiya K, et al. Excellent creep properties of Mg-Zn-Cu-Gd-based alloy strengthened by quasicrystals and Laves phases [J]. J. Mater. Res., 2005, 20(5): 1278
doi: 10.1557/JMR.2005.0156
18 Liu Y, Yuan G Y, Lu C, et al. Microstructure and mechanical properties of Mg-Zn-Gd-based alloys strengthened with quasicrystal and Laves phase [J]. T. Nonferr. Metal. Soc., 2007, 17: s353
19 Kaya A A, Uzan P, Eliezer D, et al. Electron microscopical investigation of as cast AZ91D alloy [J]. Mater. Sci. Techn., 2000, 16(9): 1001
doi: 10.1179/026708300101508955
20 Kham S A, Miyashita Y, Mutoh Y, et al. Influence of Mn content on mechanical properties and fatigue behavior of extruded Mg alloys [J]. Mater. Sci. Eng. A, 2006, 420: 315
doi: 10.1016/j.msea.2006.01.091
21 Oliver W C, Pharr G M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology [J]. J. Mater. Res., 2004, 19: 3
doi: 10.1557/jmr.2004.19.1.3
22 Rahulan N, Gopalan S, Kumaran S. Mechanical behavior of Mg-Li-Al alloys [J]. Mater. Today: Proc., 2018, 5: 17935
23 Peng X, Sun J W, Liu H J, et al. Microstructure and corrosion behavior of as-homogenized and as-extruded Mg-xLi-3Al-2Zn-0.5Y alloys (x = 4, 8, 12) [J]. T. Nonferr. Metal. Soc., 2022, 32: 134
doi: 10.1016/S1003-6326(21)65783-7
24 Sun Y H, Wang R C, Peng C Q, et al. Effects of Sn and Y on the microstructure, texture, and mechanical properties of as-extruded Mg-5Li-3Al-2Zn alloy [J]. Mater. Sci. Eng. A, 2018, 733: 429
doi: 10.1016/j.msea.2018.05.030
25 Zhang H J. Microalloying effects of rare element of Nd, Y on the Mg-6Zn-1Mn magnesium alloy [D]. Chongqing: Chongqing University, 2015
25 张红菊. 稀土Nd、Y对Mg-6Zn-1Mn镁合金微合金化效应的研究 [D]. 重庆: 重庆大学, 2015
26 Peng X, Liu W C, Wu G H. Effects of Li content on microstructure and mechanical properties of as-cast Mg-xLi-3Al-2Zn-0.5Y alloys [J]. T. Nonferr. Metal. Soc., 2022, 32: 838
doi: 10.1016/S1003-6326(22)65837-0
27 Hu W Y, Le Q Z, Zhang Z Q, et al. Effect of lithium on microstructures and mechanical properties of GW82K magnesium alloy [J]. Foundry, 2017, 66(5): 445
27 胡文义, 乐启炽, 张志强 等. Li对GW82K镁合金组织与性能的影响 [J]. 铸造, 2017, 66(5): 445
28 Ma T, Xu C J, Feng G W, et al. Effect of Li content on microstructure and properties of Mg-Li alloy [J]. Foundry Technology, 2016, 37(5): 863
28 马 涛, 徐春杰, 冯港雯 等. Li含量对Mg-Li合金组织与性能的影响 [J]. 铸造技术, 2016, 37(5): 863
29 Dorin T, Vahid A, Lamb J. Fundamentals of Aluminium Metallurgy: Chapter11, Aluminium Lithium Alloys [M]. Woodhead publishing series in metals and surface engineering, 2018: 378
30 Han J, Su X M, Jin Z H, et al. Basal-plane stacking-fault energies of Mg: A first-principles study of Li- and Al-alloying effects [J]. Scripta Mater., 2011, 64(8): 693
doi: 10.1016/j.scriptamat.2010.11.034
31 Xu Y L, Wang L, Huang M, et al. The Effect of Solid Solute and Precipitate Phase on Young's Modulus of Binary Mg-RE Alloys [J]. Adv. Eng. Mater., 2018, 20(10): 1800271
doi: 10.1002/adem.v20.10
[1] 刘锐, 张鼎冬, 张辉, 任文才, 杜金红. 空穴传输层的厚度对石墨烯基有机发光二极管性能的影响[J]. 材料研究学报, 2024, 38(3): 168-176.
[2] 齐恺力, 胡德江, 高崇, 刘峰, 庞建超, 邵琛玮, 杨梦起, 李守新, 张哲峰. 不同温度回火低合金钢缺口拉伸性能的预测[J]. 材料研究学报, 2024, 38(3): 197-207.
[3] 尹艳超, 吕逸帆, 刘千里, 许亚利, 蒋鹏, 余巍. 在室温和液氮温度Ti-Al-Fe合金的拉伸行为及其变形机理[J]. 材料研究学报, 2024, 38(3): 232-240.
[4] 周立臣. 等离子体氟改性TiO2 催化剂的制备及其光催化性能[J]. 材料研究学报, 2024, 38(2): 141-150.
[5] 郑明瑞, 李亚微, 刘静, 王莉, 郑伟, 董加胜, 张健, 楼琅洪. 缺口取向及温度对第三代单晶高温合金DD33热疲劳行为的影响[J]. 材料研究学报, 2024, 38(2): 111-120.
[6] 郝文俊, 敬和民, 席通, 杨春光, 杨柯. 奥氏体化温度对含铜高碳马氏体不锈钢的组织和性能的影响[J]. 材料研究学报, 2024, 38(2): 121-129.
[7] 曾道平, 安同邦, 郑韶先, 代海洋, 曹志龙, 马成勇. 440 MPa级高强钢焊缝金属的断裂韧性[J]. 材料研究学报, 2024, 38(2): 151-160.
[8] 刘震寰, 李勇翰, 刘洋, 王培, 李殿中. GCr15轴承钢时效过程碳化物的演化行为[J]. 材料研究学报, 2024, 38(2): 130-140.
[9] 余圣, 郭威, 吕书林, 吴树森. 原位自生相增强Ti-Zr-Cu-Pd-Mo非晶复合材料的制备及其力学性能[J]. 材料研究学报, 2024, 38(2): 105-110.
[10] 杨仁贤, 马澍成, 蔡欣, 郑雷刚, 胡小强, 李殿中. Ce元素对316LN奥氏体不锈钢高温蠕变性能的影响[J]. 材料研究学报, 2024, 38(1): 23-32.
[11] 秦艳利, 赵光普, 张昊, 倪丁瑞, 肖伯律, 马宗义. 选区激光熔融Al-30Si合金的微观组织和性能[J]. 材料研究学报, 2024, 38(1): 43-50.
[12] 李博森, 廖忠新, 高大强. BNZ组分对KNN基无铅压电陶瓷结构和性能的影响[J]. 材料研究学报, 2024, 38(1): 51-60.
[13] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[14] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[15] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.