|
|
晶界偏析以及界面相和纳米晶材料力学性能的调控 |
姜水淼1,2, 明开胜1,2, 郑士建1,2( ) |
1.河北工业大学材料科学与工程学院 天津 300401 2.天津市材料层状复合与界面控制技术重点实验室 天津 300401 |
|
A Review on Grain Boundary Segregation, Interfacial Phase and Mechanical Property Adjusting-controlling for Nanocrystalline Materials |
JIANG Shuimiao1,2, MING Kaisheng1,2, ZHENG Shijian1,2( ) |
1.School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China 2.Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Tianjin 300401, China |
引用本文:
姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
Shuimiao JIANG,
Kaisheng MING,
Shijian ZHENG.
A Review on Grain Boundary Segregation, Interfacial Phase and Mechanical Property Adjusting-controlling for Nanocrystalline Materials[J]. Chinese Journal of Materials Research, 2023, 37(5): 321-331.
1 |
Lejček P, Hofmann S, Paidar V. Solute segregation and classification of [100] tilt grain boundaries in α-iron: Consequences for grain boundary engineering [J]. Acta Mater., 2003, 51(13): 395
|
2 |
Millett P C, Selvam R P, Saxena A. Stabilizing nanocrystalline materials with dopants [J]. Acta Mater., 2007, 55(7): 2329
doi: 10.1016/j.actamat.2006.11.028
|
3 |
Hondros E D. The influence of phosphorus in dilute solid solution on the absolute surface and grain boundary energies of iron [J]. Proc. Roy. Soc. Lond., 1965, 286A(1407) : 479
|
4 |
Wynblatt P, Chatain D. Anisotropy of segregation at grain boundaries and surfaces [J]. Metall. Mater. Trans., 2007, 38A(9) : 438
|
5 |
Kirchheim R. Grain coarsening inhibited by solute segregation [J]. Acta Mater., 2002, 50(2): 413
doi: 10.1016/S1359-6454(01)00338-X
|
6 |
Kirchheim R. Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation. I. Theoretical background [J]. Acta Mater., 2007, 55(15): 5129
doi: 10.1016/j.actamat.2007.05.047
|
7 |
Tang M, Carter W C, Cannon R M. Diffuse interface model for structural transitions of grain boundaries [J]. Phys. Rev., 2006, 73B(2) : 024102
|
8 |
McLean D, Maradudin A. Grain boundaries in metals [J]. Phys. Today, 1958, 11(7): 35
|
9 |
Lejček P, Schneeweiss O. Solute segregation at ordered grain boundaries [J]. Surf. Sci., 2001, 487(1-3): 210
doi: 10.1016/S0039-6028(01)01100-1
|
10 |
Kikuchi R, Cahn J W. Grain boundaries with impurities in a two-dimensional lattice-gas model [J]. Phys. Rev., 1987, 36B(1) : 418
|
11 |
Mishin Y, Boettinger W J, Warren J A, et al. Thermodynamics of grain boundary premelting in alloys. I. Phase-field modeling [J]. Acta Mater., 2009, 57(13): 3771
doi: 10.1016/j.actamat.2009.04.044
|
12 |
Watanabe T, Tsurekawa S. The control of brittleness and development of desirable mechanical properties in polycrystalline systems by grain boundary engineering [J]. Acta Mater., 1999, 47(15-16): 4171
doi: 10.1016/S1359-6454(99)00275-X
|
13 |
Raabe D, Herbig M, Sandlöbes S, et al. Grain boundary segregation engineering in metallic alloys: A pathway to the design of interfaces [J]. Curr. Opin. Solid State Mater. Sci., 2014, 18(4): 253
doi: 10.1016/j.cossms.2014.06.002
|
14 |
Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum [J]. J. Am. Chem. Soc., 1918, 40(9): 1361
doi: 10.1021/ja02242a004
|
15 |
Lejček P, Hofmann S. Thermodynamics and structural aspects of grain boundary segregation [J]. Crit. Rev. Solid State Mater. Sci., 1995, 20(1): 1
doi: 10.1080/10408439508243544
|
16 |
Molodov D A, Czubayko U, Gottstein G, et al. Acceleration of grain boundary motion in Al by small additions of Ga [J]. Philos. Mag. Lett., 1995, 72(6): 361
doi: 10.1080/09500839508242475
|
17 |
Luo J, Cheng H K, Asl K M, et al. The role of a bilayer interfacial phase on liquid metal embrittlement [J]. Science, 2011, 333(6050): 1730
doi: 10.1126/science.1208774
pmid: 21940889
|
18 |
Wu X B, You Y W, Kong X S, et al. First-principles determination of grain boundary strengthening in tungsten: Dependence on grain boundary structure and metallic radius of solute [J]. Acta Mater., 2016, 120: 315
doi: 10.1016/j.actamat.2016.08.048
|
19 |
Raabe D, Sandlöbes S, Millán J, et al. Segregation engineering enables nanoscale martensite to austenite phase transformation at grain boundaries: A pathway to ductile martensite [J]. Acta Mater., 2013, 61(16): 6132
doi: 10.1016/j.actamat.2013.06.055
|
20 |
Wu R Q, Freeman A J, Olson G B. First principles determination of the effects of phosphorus and boron on iron grain boundary cohesion [J]. Science, 1994, 265(5170): 376
pmid: 17838041
|
21 |
Duscher G, Chisholm M F, Alber U, et al. Bismuth-induced embrittlement of copper grain boundaries [J]. Nat. Mater., 2004, 3(9): 621
pmid: 15322533
|
22 |
Buban J P, Mizoguchi T, Shibata N, et al. Zr segregation and associated Al vacancies in alumina grain boundaries [J]. J. Ceram. Soc. Jpn., 2011, 119(1395): 840
doi: 10.2109/jcersj2.119.840
|
23 |
Chen C L, Lv S H, Wang Z C, et al. Oxygen segregation at coherent grain boundaries of cubic boron nitride [J]. Appl. Phys. Lett., 2013, 102(9): 091607
|
24 |
Wang Z C, Saito M, McKenna K P, et al. Atom-resolved imaging of ordered defect superstructures at individual grain boundaries [J]. Nature, 2011, 479(7373): 380
doi: 10.1038/nature10593
|
25 |
Turlo V, Rupert T J. Dislocation-assisted linear complexion formation driven by segregation [J]. Scr. Mater., 2018, 154: 25
doi: 10.1016/j.scriptamat.2018.05.014
|
26 |
Sigle W, Richter G, Rühle M, et al. Insight into the atomic-scale mechanism of liquid metal embrittlement [J]. Appl. Phys. Lett., 2006, 89(12): 121911
doi: 10.1063/1.2356322
|
27 |
Shi X M, Luo J. Grain boundary wetting and prewetting in Ni-doped Mo [J]. Appl. Phys. Lett., 2009, 94(25): 251908
doi: 10.1063/1.3155443
|
28 |
Cantwell P R, Frolov T, Rupert T J, et al. Grain boundary complexion transitions [J]. Annu. Rev. Mater. Res., 2020, 50: 465
doi: 10.1146/matsci.2020.50.issue-1
|
29 |
Luo J, Shi X M. Grain boundary disordering in binary alloys [J]. Appl. Phys. Lett., 2008, 92(10): 101901
doi: 10.1063/1.2892631
|
30 |
Luo J. Current opinion in solid state [J]. Mater. Sci., 2008, 12: 81
|
31 |
Kuzmina M, Herbig M, Ponge D, et al. Linear complexions: Confined chemical and structural states at dislocations [J]. Science, 2015, 349(6252): 1080
doi: 10.1126/science.aab2633
pmid: 26339026
|
32 |
Lei T J, Shin J, Gianola D S, et al. Bulk nanocrystalline Al alloys with hierarchical reinforcement structures Via grain boundary segregation and complexion formation [J]. Acta Mater., 2021, 221: 117394
doi: 10.1016/j.actamat.2021.117394
|
33 |
Turlo V, Rupert T J. Interdependent linear complexion structure and dislocation mechanics in Fe-Ni [J]. Crystals, 2020, 10(12): 1128
doi: 10.3390/cryst10121128
|
34 |
Turlo V, Rupert T J. Grain boundary complexions and the strength of nanocrystalline metals: Dislocation emission and propagation [J]. Acta Mater., 2018, 151: 100
doi: 10.1016/j.actamat.2018.03.055
|
35 |
Khalajhedayati A, Pan Z L, Rupert T J. Manipulating the interfacial structure of nanomaterials to achieve a unique combination of strength and ductility [J]. Nat. Commun., 2016, 7(1): 10802
doi: 10.1038/ncomms10802
|
36 |
Chen B, Zhu L L, Xin Y C, et al. Grain rotation in plastic deformation [J]. Quantum Beam Sci., 2019, 3(3): 17
doi: 10.3390/qubs3030017
|
37 |
Naik S N, Walley S M. The hall–petch and inverse hall-petch relations and the hardness of nanocrystalline metals [J]. J. Mater. Sci., 2020, 55(7): 2661
doi: 10.1007/s10853-019-04160-w
|
38 |
Tang F, Gianola D S, Moody M P, et al. Observations of grain boundary impurities in nanocrystalline Al and their influence on microstructural stability and mechanical behaviour [J]. Acta Mater., 2012, 60(3): 1038
doi: 10.1016/j.actamat.2011.10.061
|
39 |
Hu J, Shi Y N, Sauvage X, et al. Grain boundary stability governs hardening and softening in extremely fine nanograined metals [J]. Science, 2017, 355(6331): 1292
doi: 10.1126/science.aal5166
pmid: 28336664
|
40 |
Yang W F, Gong M Y, Yao J H, et al. Hardening induced by dislocation core spreading at disordered interface in Cu/Nb multilayers [J]. Scr. Mater., 2021, 200: 113917
doi: 10.1016/j.scriptamat.2021.113917
|
41 |
Feng L, Hao R, Lambros J, et al. The influence of dopants and complexion transitions on grain boundary fracture in alumina [J]. Acta Mater., 2018, 142: 121
doi: 10.1016/j.actamat.2017.09.002
|
42 |
Farkas D, Van Petegem S, Derlet P M, et al. Dislocation activity and nano-void formation near crack tips in nanocrystalline Ni [J]. Acta Mater., 2005, 53(11): 3115
doi: 10.1016/j.actamat.2005.02.012
|
43 |
Schuler J D, Barr C M, Heckman N M, et al. In situ high-cycle fatigue reveals importance of grain boundary structure in nanocrystalline Cu-Zr [J]. JOM, 2019, 71(4): 1221
doi: 10.1007/s11837-019-03361-7
|
44 |
Pan Z L, Rupert T J. Amorphous intergranular films as toughening structural features [J]. Acta Mater., 2015, 89: 205
doi: 10.1016/j.actamat.2015.02.012
|
45 |
Balbus G H, Wang F L, Gianola D S. Suppression of shear localization in nanocrystalline Al-Ni-Ce Via segregation engineering [J]. Acta Mater., 2020, 188: 63
doi: 10.1016/j.actamat.2020.01.041
|
46 |
Wang Y M, Li J, Hamza A V, et al. Ductile crystalline-amorphous nanolaminates [J]. Proc. Natl. Acad. Sci. USA, 2007, 104(27): 11155
pmid: 17592136
|
47 |
Zheng S J, Ma X L, Yamamoto T, et al. Atomistic study of abnormal grain growth structure in BaTiO3 by transmission electron microscopy and scanning transmission electron microscopy [J]. Acta Mater., 2013, 61(7): 2298
doi: 10.1016/j.actamat.2012.12.046
|
48 |
Weissmüller J. Alloy effects in nanostructures [J]. Nanostruct. Mater., 1993, 3(1-6): 261
doi: 10.1016/0965-9773(93)90088-S
|
49 |
Khalajhedayati A, Rupert T J. High-temperature stability and grain boundary complexion formation in a nanocrystalline Cu-Zr alloy [J]. JOM, 2015, 67(12): 2788
doi: 10.1007/s11837-015-1644-9
|
50 |
Ahadi A, Kalidindi A R, Sakurai J, et al. The role of W on the thermal stability of nanocrystalline nitiwx thin films [J]. Acta Mater., 2018, 142: 181
doi: 10.1016/j.actamat.2017.09.056
|
51 |
Ding J, Shang Z, Zhang Y F, et al. Tailoring the thermal stability of nanocrystalline Ni alloy by thick grain boundaries [J]. Scr. Mater., 2020, 182: 21
doi: 10.1016/j.scriptamat.2020.02.032
|
52 |
Pan Z L, Rupert T J. Effect of grain boundary character on segregation-induced structural transitions [J]. Phys. Rev., 2016, 93B(13) : 134113
|
53 |
Grigorian C M, Rupert T J. Thick amorphous complexion formation and extreme thermal stability in ternary nanocrystalline Cu-Zr-Hf alloys [J]. Acta Mater., 2019, 179: 172
doi: 10.1016/j.actamat.2019.08.031
|
54 |
Schuler J D, Donaldson O K, Rupert T J. Amorphous complexions enable a new region of high temperature stability in nanocrystalline Ni-W [J]. Scr. Mater., 2018, 154: 49
doi: 10.1016/j.scriptamat.2018.05.023
|
55 |
Balbus G H, Kappacher J, Sprouster D J, et al. Disordered interfaces enable high temperature thermal stability and strength in a nanocrystalline aluminum alloy [J]. Acta Mater., 2021, 215: 116973
doi: 10.1016/j.actamat.2021.116973
|
62 |
Lejček P, translated by Zheng L, Wang M Q. Grain Boundary Segregation in Metals [M]. Beijing: Tsinghua University Press, 2020: 41
|
62 |
Lejček P著, 郑 磊, 王民庆 译. 金属中的晶界偏聚 [M]. 北京: 清华大学出版社, 2020: 41
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|