Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (2): 81-88    DOI: 10.11901/1005.3093.2022.157
  研究论文 本期目录 | 过刊浏览 |
(Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制
周聪1,2, 昝宇宁1,3(), 王东1, 王全兆1,3, 肖伯律1, 马宗义1,3
1.中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
2.中国科学技术大学材料科学与工程学院 沈阳 110016
3.中国科学院金属研究所 中国科学院核用材料与安全评价重点实验室 沈阳 110016
High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite
ZHOU Cong1,2, ZAN Yuning1,3(), WANG Dong1, WANG Quanzhao1,3, XIAO Bolv1, MA Zongyi1,3
1.Shi -Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3.CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
Cong ZHOU, Yuning ZAN, Dong WANG, Quanzhao WANG, Bolv XIAO, Zongyi MA. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. Chinese Journal of Materials Research, 2023, 37(2): 81-88.

全文: PDF(13067 KB)   HTML
摘要: 

利用Al-La2O3的原位反应和粉末冶金工艺制备出(Al11La3+Al2O3)/Al复合材料。结果表明,高能球磨和高温烧结促进了原位反应,使Al与La2O3充分反应并制备出致密无缺陷的材料。对其微观组织的分析表明,微米Al11La3和纳米Al2O3颗粒均匀分散于基体之中。这种复合材料的室温抗拉强度为328 MPa、延伸率为10.5%,350℃的高温抗拉强度为119 MPa、延伸率为10.2%。与传统Al-Cu-Mg-Ag和Al-Si-Cu-Mg耐热铝合金相比,本文的制备的(Al11La3+Al2O3)/Al复合材料其高温抗拉强度提高了大约20%。这种材料的室温强化机制源于Al11La3和Al2O3的位错强化和载荷传递强化,而高温强化机制则源于Al2O3的晶界钉扎。

关键词 复合材料高能球磨微观组织力学性能    
Abstract

A (Al11La3+Al2O3)/Al composite was prepared by powder metallurgy process through the in-situ reaction of Al-La2O3. It was found that the high energy ball milling can promote the in-situ reaction and facilitate high-temperature sintering, thus a sufficient in-situ reaction between Al and La2O3 was achieved, and a dense and defect-free material was obtained. The microstructure analysis showed that micro-Al11La3 and nano-Al2O3 particles were uniformly dispersed in the matrix. The room-temperature tensile strength of the composite reached 328 MPa, the elongation was 10.5%, the tensile strength at 350℃ reached 119 MPa, and the elongation was 10.2%. Compared with the traditional Al-Cu-Mg-Ag and Al-Si-Cu-Mg heat-resistant aluminum alloys, the high-temperature tensile strength of the (Al11La3+Al2O3)/Al composite was enhanced by about 20%. The strengthening effect at room temperature may come mainly from the dislocation strengthening and load-transfer strengthening effect of Al11La3 and Al2O3, while the strengthening effect at high temperature may be ascribed to the grain boundary pinning effect of Al2O3.

Key wordscomposite    high energy ball milling    microstructure    mechanical properties
收稿日期: 2022-03-21     
ZTFLH:  TG146.2  
基金资助:中核集团“青年英才”项目;国家自然科学基金(52171056);中国科学院金属研究所创新基金(2021-ZD02);辽宁省“兴辽英才计划”(XLYC1902058)
作者简介: 周聪,男,1997年生,硕士
图1  铝粉、氧化镧颗粒和球磨粉末的形貌
图2  高能球磨粉末和复合材料的X射线衍射谱
图3  复合材料的低倍和高倍SEM照片、元素面扫和能谱分析
图4  复合材料的TEM照片
图5  纯铝基体的TEM照片和相同位置的能谱分析
图6  复合材料和铝基体的室温和350℃高温抗拉曲线
SampleRT350℃
YS/MPaUTS/MPaEL/%YS/MPaUTS/MPaEL/%
Composite292±4328±310.5±0.9113±5119±410.2±2.2
Al matrix208±8252±318.5±1.099±6100±415.2±2.0
表1  复合材料和铝基体的拉伸性能
/MPaσymAl2O3Al11La3
σL-T/MPa

σOro

/MPa

σGND

/MPa

σL-T/MPa

σOro

/MPa

σGND

/MPa

10619264011
表2  复合材料和铝基体的屈服强度计算
图7  复合材料的室温和350℃拉伸断口的SEM照片
1 Chak V, Chattopadhyay H, Dora T L. A review on fabrication methods, reinforcements and mechanical properties of aluminum matrix composites [J]. J. Manuf. Process., 2020, 56: 1059
doi: 10.1016/j.jmapro.2020.05.042
2 Mavhungu S T, Akinlabi E T, Onitiri M A, et al. Aluminum matrix composites for industrial use: advances and trends [J]. Procedia Manufacturing, 2017, 7: 178
doi: 10.1016/j.promfg.2016.12.045
3 Hu H E, Zhen L, Yang L, et al. Deformation behavior and microstructure evolution of 7050 aluminum alloy during high temperature deformation [J]. Mater. Sci. Eng. A, 2008, 488(1-2): 64
doi: 10.1016/j.msea.2007.10.051
4 Guo X, Tao L, Zhu S, et al. Experimental Investigation of Mechanical Properties of Aluminum Alloy at High and Low Temperatures [J]. J. Mater. Civ. Eng., 2020, 32(2): 06019016
5 Jeong C Y. High temperature mechanical properties of Al-Si-Mg-(Cu) alloys for automotive cylinder heads [J]. Mater. Trans., 2013, 54(4): 588
doi: 10.2320/matertrans.M2012285
6 Mohamed A M A, Samuel F H, Kahtani S A. Microstructure, tensile properties and fracture behavior of high temperature Al-Si-Mg-Cu cast alloys [J]. Mater. Sci. Eng. A, 2013, 577: 64
doi: 10.1016/j.msea.2013.03.084
7 Skinner D J, Bye R L, Raybould D, et al. Dispersion strengthened Al-Fe-V-Si alloys [J]. Scripta Metallurgica, 1986, 20(6): 867
doi: 10.1016/0036-9748(86)90456-4
8 Barmouz M, Besharati Givi M K, Seyfi J. On the role of processing parameters in producing Cu/SiC metal matrix composites via friction stir processing: Investigating microstructure, microhardness, wear and tensile behavior [J]. Mater. Charact., 2011, 62(1): 108
doi: 10.1016/j.matchar.2010.11.005
9 Zan Y N, Zhang Q, Zhou Y T, et al. Enhancing high-temperature strength of B4C-6061Al neutron absorber material by in-situ Mg(Al)B2 [J]. J. Nucl. Mater., 2019, 526: 151788
doi: 10.1016/j.jnucmat.2019.151788
10 Jiang L, Li Z, Fan G, et al. Strong and ductile carbon nanotube/aluminum bulk nanolaminated composites with two-dimensional alignment of carbon nanotubes [J]. Scr. Mater., 2012, 66(6): 331
doi: 10.1016/j.scriptamat.2011.11.023
11 Li M, Gao H, LianG J, et al. Microstructure evolution and properties of graphene nanoplatelets reinforced aluminum matrix composites [J]. Mater. Charact., 2018, 140: 172
doi: 10.1016/j.matchar.2018.04.007
12 Wang H, Li G, Zhao Y, et al. In situ fabrication and microstructure of Al2O3 particles reinforced aluminum matrix composites [J]. Mater. Sci. Eng. A, 2010, 527(12): 2881
doi: 10.1016/j.msea.2010.01.022
13 Zhu H, Min J, Li J, et al. In situ fabrication of (α-Al2O3+Al3Zr)/Al composites in an Al-ZrO2 system [J]. Compos. Sci. Technol., 2010, 70(15): 2183
doi: 10.1016/j.compscitech.2010.08.021
14 Feng C F, Froyen L. Formation of Al3Ti and Al2O3 from an Al-TiO2 system for preparing in-situ aluminium matrix composites [J]. Compos. Pt. A-Appl. Sci. Manuf., 2000, 31(4): 385
doi: 10.1016/S1359-835X(99)00041-X
15 Rong X, Zhao D, He C, et al. Revealing the strengthening and toughening mechanisms of Al-CuO composite fabricated via in-situ solid-state reaction [J]. Acta Mater., 2021, 204: 116524
doi: 10.1016/j.actamat.2020.116524
16 Anthony A I, Suzuki A, Kamado S, et al. Optimization of Mg-Zn-Al-Ca-La Alloys for the Improvement of Casting Properties and Creep Resistance [J]. Materials Science Forum, 2005, 488-489: 805
doi: 10.4028/www.scientific.net/MSF.488-489.805
17 Colombo M, Gariboldi E, Morri A. Influences of different Zr additions on the microstructure, room and high temperature mechanical properties of an Al-7Si-0.4Mg alloy modified with 0.25%Er [J]. Mater. Sci. Eng. A, 2018, 713: 151
doi: 10.1016/j.msea.2017.12.068
18 Khomamizadeh F, Nami B, Khoshkhooei S. Effect of rare-earth element additions on high-temperature mechanical properties of AZ91 magnesium alloy [J]. Metall. Mater. Trans. A, 2005, 36(12): 3489
doi: 10.1007/s11661-005-0022-6
19 Chen C F, Kao P W, Chang L, et al. Mechanical properties of nanometric Al2O3 particulate-reinforced Al-Al11Ce3 composites produced by friction stir processing [J]. Mater. Trans., 2010, 51(5): 933
doi: 10.2320/matertrans.M2009406
20 Sakamoto T, Kukeya S, Ohfuji H. Microstructure and room and high temperature mechanical properties of ultrafine structured Al-5%Y2O3 and Al-5%La2O3 nanocomposites fabricated by mechanical alloying and hot pressing [J]. Metall. Mater. Trans. A, 2019, 748: 428
21 Choi H J, Shin J H, Bae D H. The effect of milling conditions on microstructures and mechanical properties of Al/MWCNT composites [J]. Compos. Pt. A-Appl. Sci. Manuf., 2012, 43(7): 1061
doi: 10.1016/j.compositesa.2012.02.008
22 Chao Z L, Zhang L C, Jiang L T, et al. Design, microstructure and high temperature properties of in-situ Al3Ti and nano-Al2O3 reinforced 2024Al matrix composites from Al-TiO2 system [J]. J. Alloy. Compd., 2019, 775: 290
doi: 10.1016/j.jallcom.2018.09.376
23 Zuo L, Ye B, Feng J, et al. Effect of Q-Al5Cu2Mg8Si6 phase on mechanical properties of Al-Si-Cu-Mg alloy at elevated temperature [J]. Mater. Sci. Eng. A, 2017, 693: 26
doi: 10.1016/j.msea.2017.03.087
24 Xiao D H, Wang J N, Ding D Y, et al. Effect of rare earth Ce addition on the microstructure and mechanical properties of an Al-Cu-Mg-Ag alloy [J]. J. Alloy. Compd., 2003, 352(1-2): 84
doi: 10.1016/S0925-8388(02)01162-3
25 Zan Y N, Zhou Y T, Zhao H, et al. Enhancing high-temperature strength of (B4C+Al2O3)/Al designed for neutron absorbing materials by constructing lamellar structure [J]. Compos. Pt. B-Eng., 2020, 183: 107674
doi: 10.1016/j.compositesb.2019.107674
26 Hansen N. Hall-Petch relation and boundary strengthening [J]. Scr. Mater., 2004, 51(8): 801
doi: 10.1016/j.scriptamat.2004.06.002
27 Ma K, Wen H, Hu T, et al. Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy [J]. Acta Mater., 2014, 62: 141
doi: 10.1016/j.actamat.2013.09.042
28 Nardone V C, Prewo K M. On the strength of discontinuous silicon carbide reinforced aluminum composites [J]. Scripta Metallurgica, 1986, 20(1): 43
doi: 10.1016/0036-9748(86)90210-3
29 Zhang Z, Chen D. Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: A model for predicting their yield strength [J]. Scr. Mater., 2006, 54(7): 1321
doi: 10.1016/j.scriptamat.2005.12.017
30 Zan Y N, Zhou Y T, Liu Z Y, et al. Microstructure and mechanical properties of (B4C+Al2O3)/Al composites designed for neutron absorbing materials with both structural and functional usages [J]. Mater. Sci. Eng. A, 2020, 773: 138840
doi: 10.1016/j.msea.2019.138840
31 Poletti C, Balog M, Simancik F, et al. High-temperature strength of compacted sub-micrometer aluminium powder [J]. Acta Mater., 2010, 58(10): 3781
doi: 10.1016/j.actamat.2010.03.021
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[4] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[5] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[6] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[7] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[8] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[9] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[10] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[11] 史畅, 杜宇航, 赖利民, 肖思明, 郭宁, 郭胜锋. CrTaTi难熔中熵合金的力学性能和抗氧化性能[J]. 材料研究学报, 2023, 37(6): 443-452.
[12] 雷志国, 文胜平, 黄晖, 张二庆, 熊湘沅, 聂祚仁. 冷轧变形和添加SiAl-2Mg-0.8Cu(-Si)合金的组织和力学性能的影响[J]. 材料研究学报, 2023, 37(6): 463-471.
[13] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[14] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[15] 夏博, 王斌, 张鹏, 李小武, 张哲峰. 回火温度对高强弹簧钢微观组织和冲击性能的影响[J]. 材料研究学报, 2023, 37(5): 341-352.