Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (5): 341-352    DOI: 10.11901/1005.3093.2022.462
  研究论文 本期目录 | 过刊浏览 |
回火温度对高强弹簧钢微观组织和冲击性能的影响
夏博1, 王斌2, 张鹏2(), 李小武1, 张哲峰1,2
1.东北大学材料科学与工程学院 沈阳 110819
2.中国科学院金属研究所 沈阳 110016
Effect of Tempering Temperature on Microstructure and Impact Properties of Two High-strength Leaf Spring Steels
XIA Bo1, WANG Bin2, ZHANG Peng2(), LI Xiaowu1, ZHANG Zhefeng1,2
1.School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

夏博, 王斌, 张鹏, 李小武, 张哲峰. 回火温度对高强弹簧钢微观组织和冲击性能的影响[J]. 材料研究学报, 2023, 37(5): 341-352.
Bo XIA, Bin WANG, Peng ZHANG, Xiaowu LI, Zhefeng ZHANG. Effect of Tempering Temperature on Microstructure and Impact Properties of Two High-strength Leaf Spring Steels[J]. Chinese Journal of Materials Research, 2023, 37(5): 341-352.

全文: PDF(31606 KB)   HTML
摘要: 

用光学显微镜、扫描电镜和透射电镜观察了两种高强弹簧钢50CrMnMoVNb和50CrMnSiVNb钢的微观组织,并对其冲击韧性进行了对比分析。结果表明:50CrMnMoVNb钢的带状偏析程度比50CrMnSiVNb钢更显著,大角度晶界占总晶界比例更高,回火脆性程度更轻。两种弹簧钢冲击韧性的对比结果表明,淬火和在150~400℃回火的50CrMnSiVNb钢其冲击韧性更优。此温度范围内回火的冲击韧性主要受带状偏析程度的影响,偏析带更容易发生解理断裂,进而使冲击裂纹扩展路径更平直;而在400~500℃回火后50CrMnMoVNb钢的冲击韧性更优,主要受回火脆性和大角度晶界比例的影响。在回火过程中板条界面处的薄膜状碳化物使回火脆性大幅度恶化冲击韧性,而大角度晶界对裂纹扩展更强的阻碍作用消耗了更多的能量,使冲击韧性提高。

关键词 金属材料50CrMnMoVNb钢50CrMnSiVNb钢回火温度冲击韧性微观组织    
Abstract

The effect of tempering temperature on the microstructure and impact toughness of two high-strength leaf spring steels 50CrMnSiVNb and 50CrMnMoVNb for automobile was comparatively studied by means of optical microscope, scanning electron microscope, transmission electron microscope and impact tester. The results show that compared with those of 50CrMnSiVNb steel, there are more segregation bands along with a larger proportion of large-angle grain boundaries in the microstructure of 50CrMnMoVNb steel, while the later steel shows less temper brittleness. When comparing the impact toughness of the two leaf spring steels, it is found that being quenched and then tempered in the range of 150~400℃ for the two steels, the 50CrMnSiVNb steel presents better impact toughness. The impact toughness of the steel tempered in this range is mainly affected by the degree of banded segregation, which is more prone to cleavage fracture and leads to a straighter impact crack propagation path; In the contrast, after the two steels were tempered in the range of 400~500℃, the 50CrMnMoVNb steel shows better impact toughness, and the impact toughness in this region is mainly affected by the tempering brittleness and the proportion of large-angle grain boundary. The tempering brittleness caused by the thin-film like carbides at the interface of the laths during tempering greatly worsens the impact toughness, while the large angle grain boundary has a stronger barrier effect to crack propagation and consumes more energy, leading to the improvement of the impact toughness.

Key wordsmetallic materials    50CrMnMoVNb steel    50CrMnSiVNb steel    tempering temperature    impact toughness    microstructure
收稿日期: 2022-08-26     
ZTFLH:  TG142.1  
基金资助:吉林省与中国科学院科技合作高技术产业化专项资金(2020SYHZ0008);吉林省与中国科学院科技合作高技术产业化专项资金(2021SYHZ0046)
作者简介: 夏博,男,1993年生,博士生
MaterialsCSiMnCrMoVNbFe
50CrMnMoVNb0.50.150.861.060.170.050.030Bal.
50CrMnSiVNb0.50.860.900.99˂0.020.110.027Bal.
表1  两种弹簧钢的化学成分
图1  使用Thermo-Calc软件计算出的α和γ相的体积分数
图2  两种弹簧钢在不同温度回火后的拉伸性能[6]
图3  不同状态下两种弹簧钢的金相组织
图4  两种弹簧钢在不同温度回火后的透射电镜照片
图5  两种弹簧钢在350℃回火态的EBSD显微组织、晶粒尺寸和取向差分布
图6  两种弹簧钢在500℃回火态的EBSD显微组织、晶粒尺寸和取向差分布
图 7  两种弹簧钢在不同温度回火后的冲击韧性
图8  在不同温度回火的两种弹簧钢冲击断口的SEM形貌
图9  250℃回火态50CrMnMoVNb钢的冲击断口韧窝、解理面和组织中的带状偏析的SEM形貌和EDS结果
图10  250℃回火态50CrMnMoVNb钢的冲击裂纹扩展路径
图11  微观组织影响冲击断裂的机制和裂纹扩展路径的示意图
图12  两种钢在250℃回火后的XRD谱
1 Sun L. Evaluation and optimization of the ride comfort of hybrid bus based on the handling and stability [D]. Zhenjiang: Jiangsu University, 2012
1 孙 丽. 基于操纵稳定性的混合动力客车平顺性评价与优化 [D]. 镇江: 江苏大学, 2012
2 Jiang Y Q, Xiao B, Zhao P. Design and suspension performance analysis of vehicle steel spring [J]. Automob. Appl. Technol., 2018, (19): 147
2 姜永晴, 肖 冰, 赵 萍. 汽车钢板弹簧的设计与悬架性能分析 [J]. 汽车实用技术, 2018, (19): 147
3 Wang D Q Q. Fatigue property and fatigue cracking risk assessment of a surface strengthened 50CrMnMoVNb spring steel [D]. Shenyang: Northeastern University, 2018
3 王董琪琼. 表面强化50CrMnMoVNb弹簧钢疲劳性能与疲劳风险评估 [D]. 沈阳: 东北大学, 2018
4 Li H. Study on microstructure and properties of high strength spring steel [D]. Shenyang: Northeastern University, 2018
4 李 涵. 高强度弹簧钢组织与性能的研究 [D]. 沈阳: 东北大学, 2018
5 Wang D Q Q, Wang Q, Zhu Y K, et al. Evaluating the fatigue cracking risk of surface strengthened 50CrMnMoVNb spring steel with abnormal life time distribution [J]. Mater. Sci. Eng., 2018, 732A: 192
6 Xia B, Zhang P, Wang B, et al. A simultaneous improvement of the strength and plasticity of spring steels by replacing Mo with Si [J]. Mater. Sci. Eng., 2021, 820A: 141516
7 Ren C X, Wang D Q Q, Wang Q, et al. Enhanced bending fatigue resistance of a 50CrMnMoVNb spring steel with decarburized layer by surface spinning strengthening [J]. Int. J. Fatigue, 2019, 124: 277
doi: 10.1016/j.ijfatigue.2019.03.014
8 Zhu G W, Wu D, Lu S P. Effect of C- and W-content on microstructure and toughness of weld metal for low alloy Cr-Mo steel [J]. Chin. J. Mater. Res., 2021, 35: 481
8 朱高文, 吴 栋, 陆善平. C和W对低合金Cr-Mo钢焊缝金属组织和冲击韧性的影响 [J]. 材料研究学报, 2021, 35: 481
9 Diao W, Du L, Wang Y B, et al. Anisotropy of Ti6Al4V alloy fabricated by selective laser melting [J]. Chin. J. Mater. Res., 2022, 36(3): 231
9 刁 威, 杜 磊, 汪彦博 等. 选区激光熔化Ti6Al4V合金的各向异性 [J]. 材料研究学报, 2022, 36(3): 231
10 Goulas C, Mecozzi M G, Sietsma J. Bainite formation in medium-carbon low-silicon spring steels accounting for chemical segregation [J]. Metall. Mater. Trans., 2016, 47A: 3077
11 Tang H Y, Wang Y, Wu G H, et al. Inclusion evolution in 50CrVA spring steel by optimization of refining slag [J]. J. Iron Steel Res. Int., 2017, 24(9): 879
doi: 10.1016/S1006-706X(17)30130-9
12 Wang M F. Analysis of the band structure in forged steel parts and heat treatment [J]. New Technol. New Process, 2003, (8): 32
12 王民方. 锻钢件带状组织的分析与热处理 [J]. 新技术新工艺, 2003, (8): 32
13 Chen J, Luan D C, Hu Z H, et al. Research on microstructure and mechanical properties of electroslag remelting H13-type die steel [J]. Hot Working Technol., 2019, 48(18): 146
13 陈 杰, 栾道成, 胡志华 等. 电渣重熔H13型模具钢组织及力学性能研究 [J]. 热加工工艺, 2019, 48(18): 146
14 He Q B, Wu H L, Yi T B, et al. Effect of homogenizing on microstructure and mechanical properties of 32Cr2Mo2NiVNb steel [J]. Heat Treat. Met., 2008, 33(8): 124
14 何庆兵, 吴护林, 易同斌 等. 均匀化退火对32Cr2Mo2NiVNb钢组织和性能的影响 [J]. 金属热处理, 2008, 33(8): 124
15 Sun J J, Jiang T, Liu H J, et al. Enhancement of impact toughness by delamination fracture in a low-alloy high-strength steel with Al alloying [J]. Metall. Mater. Trans., 2016, 47A: 5985
16 Li D H, Li Z M, Xiao M G, et al. Effect of deep cryogenic treatment on mechanical property and microstructure of a low carbon high alloy martensitic bearing steel during tempering [J]. Chin. J. Mater. Res., 2019, 33(8): 561
16 李东辉, 李志敏, 肖茂果 等. 深冷处理对低碳高合金马氏体轴承钢力学性能及组织的影响 [J]. 材料研究学报, 2019, 33(8): 561
doi: 10.11901/1005.3093.2019.095
17 Thomas G, Chen Y L. Structure and mechanical properties of Fe-Cr-Mo-C alloys with and without boron [J]. Metall. Trans., 1981, 12A: 933
18 Xia B, Zhang X M, Misra R D K, et al. Significant impact of cold-rolling deformation and annealing on damping capacity of Fe-Mn-Cr alloy [J]. J. Iron Steel Res. Int., 2020, 27(5): 566
doi: 10.1007/s42243-020-00386-0
19 Duan Q Q, Qu R T, Zhang P, et al. Intrinsic impact toughness of relatively high strength alloys [J]. Acta Mater., 2018, 142: 226
doi: 10.1016/j.actamat.2017.09.064
20 Zhang Y L, Liu H Y, Ruan X J, et al. Microsegregation behaviors of alloy elements and their effects on the formation of banded structure in pinion steels [J]. J. Univ. Sci. Technol. Beijing, 2009, 31(suppl.1) : 199
20 张延玲, 刘海英, 阮小江 等. 中低碳齿轮钢中合金元素的偏析行为及其对带状组织的影响 [J]. 北京科技大学学报, 2009, 31(): 199
21 Wang B, Zhang P, Duan Q Q, et al. Synchronously improved fatigue strength and fatigue crack growth resistance in twinning-induced plasticity steels [J]. Mater. Sci. Eng., 2018, 711A: 533
22 Wang B, Duan Q Q, Zhang P, et al. Investigation on the cracking resistances of different ageing treated 18Ni maraging steels [J]. Mater. Sci. Eng., 2020, 711A: 138553
23 Li H F, Wang S G, Zhang P, et al. Crack propagation mechanisms of AISI 4340 steels with different strength and toughness [J]. Mater. Sci. Eng., 2018, 729A: 130
24 Irwin G R. Fracture Dynamics, Fracturing of Metals [M]. Cleveland: American Society for Metals, 1948: 147
25 Tu M Y, Hsu C A, Wang W H, et al. Comparison of microstructure and mechanical behavior of lower bainite and tempered martensite in JIS SK5 steel [J]. Mater. Chem. Phys., 2008, 107: 418
doi: 10.1016/j.matchemphys.2007.08.017
26 Zhang X Z, Knott J F. Cleavage Fracture in bainitic and martensitic microstructures [J]. Acta Mater., 1999, 47: 3483
doi: 10.1016/S1359-6454(99)00200-1
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.