(Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制
1.
2.
3.
High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite
1.
2.
3.
通讯作者: 昝宇宁,副研究员,ynzan15b@imr.ac.cn,研究方向为铝基复合材料研发与应用
责任编辑: 黄青
收稿日期: 2022-03-21 修回日期: 2022-06-25
基金资助: |
|
Corresponding authors: ZAN Yuning, Tel:
Received: 2022-03-21 Revised: 2022-06-25
Fund supported: |
|
作者简介 About authors
周聪,男,1997年生,硕士
利用Al-La2O3的原位反应和粉末冶金工艺制备出(Al11La3+Al2O3)/Al复合材料。结果表明,高能球磨和高温烧结促进了原位反应,使Al与La2O3充分反应并制备出致密无缺陷的材料。对其微观组织的分析表明,微米Al11La3和纳米Al2O3颗粒均匀分散于基体之中。这种复合材料的室温抗拉强度为328 MPa、延伸率为10.5%,350℃的高温抗拉强度为119 MPa、延伸率为10.2%。与传统Al-Cu-Mg-Ag和Al-Si-Cu-Mg耐热铝合金相比,本文的制备的(Al11La3+Al2O3)/Al复合材料其高温抗拉强度提高了大约20%。这种材料的室温强化机制源于Al11La3和Al2O3的位错强化和载荷传递强化,而高温强化机制则源于Al2O3的晶界钉扎。
关键词:
A (Al11La3+Al2O3)/Al composite was prepared by powder metallurgy process through the in-situ reaction of Al-La2O3. It was found that the high energy ball milling can promote the in-situ reaction and facilitate high-temperature sintering, thus a sufficient in-situ reaction between Al and La2O3 was achieved, and a dense and defect-free material was obtained. The microstructure analysis showed that micro-Al11La3 and nano-Al2O3 particles were uniformly dispersed in the matrix. The room-temperature tensile strength of the composite reached 328 MPa, the elongation was 10.5%, the tensile strength at 350℃ reached 119 MPa, and the elongation was 10.2%. Compared with the traditional Al-Cu-Mg-Ag and Al-Si-Cu-Mg heat-resistant aluminum alloys, the high-temperature tensile strength of the (Al11La3+Al2O3)/Al composite was enhanced by about 20%. The strengthening effect at room temperature may come mainly from the dislocation strengthening and load-transfer strengthening effect of Al11La3 and Al2O3, while the strengthening effect at high temperature may be ascribed to the grain boundary pinning effect of Al2O3.
Keywords:
本文引用格式
周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义.
ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi.
进行复合化提高铝合金的高温强度,一直是备受关注的研究方向。添加SiC、B4C、碳纳米管、石墨烯等增强相,不仅使其室温强度明显提高[8~11],高温强度或蠕变性能也有不同程度的提高。Al2O3与铝基体的界面相容性优异且没有任何界面反应,在基体中的稳定性十分优异。而原位生成的纳米尺度Al2O3,具有很高的高温强化作用[12]。金属氧化物如ZrO2、TiO2和CuO等可与Al发生原位反应生成Al2O3,还能形成金属间化合物如Al3Zr、Al3Ti和Al2Cu[13~15],因此可实现协同强化。在铝合金中添加一定含量的稀土元素可细化晶粒,还能与铝基体生成高热稳定性的金属间化合物,有利于提高材料的抗蠕变性能[16~19]。因此,向铝基体中添加稀土金属氧化物借助原位反应同时生成Al2O3和稀土与铝的金属间化合物,有望制备出耐高温性能更优的铝基复合材料。
1 实验方法
图1
图1
铝粉、氧化镧颗粒和球磨粉末的形貌
Fig.1
Morphologies of pure Al powders (a), La2O3 particles (b), and mixed powders after HEBM (c)
高能球磨后的混合粉末如图1c所示。为了确保完全反应,将混合粉末在630℃热压烧结2 h,烧结时真空度为10-1 Pa。最后将烧结后的坯锭在450℃以16:1的挤压比制备出复合材料棒材。
为评价Al11La3和Al2O3的强化效果,对纯铝粉进行工艺相同的球磨、烧结和挤压,制备出对比样品。本文所用实验样品,均取自热挤压棒材。
使用X射线衍射仪(X-ray diffraction, XRD)分析复合材料的物相,用扫描电子显微镜(Scanning electron microscopy, SEM, FEI Apreo)和透射电子显微镜(Transmission electron microscopy, TEM, FEI Talos)观察复合材料的微观结构。用于TEM观察的样品需用5000目砂纸打磨后再用凹坑研磨仪研磨,最后用Gatan PIPS Ⅱ 695精密离子减薄仪将其离子减薄。在平行于挤压方向加工标距尺寸为15 mm×4 mm×2 mm的狗骨形拉伸试样,使用MTS E45.105万能试验机分别在室温和350℃进行拉伸实验,应变速率为1×10-3 s-1,350℃高温拉伸的保温时间为10 min,每个材料至少测试3次。用SEM(FEI Apreo)观察拉伸断口。
2 实验结果和分析
2.1 复合材料的的相组成
图2给出了高能球磨后的混合粉末和复合材料的X射线衍射谱。可以看出,在混合粉末的谱中出现了Al11La3衍射峰,表明在高能球磨过程中发生了原位反应。在复合材料的谱中出现了显著的Al11La3衍射峰而没有La2O3的衍射峰,表明原位反应十分完全。计算结果表明,La2O3与Al完全反应将得到Al11La3和Al2O3总体积分数为10%的铝基复合材料(Al11La3体积分数为8.02%,Al2O3体积分数为1.98%)。
图2
图2
高能球磨粉末和复合材料的X射线衍射谱
Fig.2
XRD patterns of mixed powders after HEBM (a) and composite (b)
Sakamoto等[20]用Al-La2O3制备复合材料时,在球磨过程中并未发生原位反应,烧结后剩余大量的La2O3。本文实验中充分的原位反应,可归因于球磨和烧结两个过程。在Sakamoto等[20]使用容积为50 mL的球磨罐,球料比为10:1,转速为700 r/min,球磨100 h,可估算出磨球的平均速度为0.83 m/s;而本文实验中的罐体容量为5 L,转速为400 r/min,则磨球的平均速度为3.14 m/s。同时,15:1的球料比也使本文实验中的球磨强度更高,从而球磨6 h便激活了原位反应。这表明,为了激活Al-La2O3原位反应,球磨强度比球磨时间更重要,而较高的烧结温度则可使反应充分。
2.2 复合材料的显微组织
图3给出了复合材料的SEM照片和能谱。从图3a可见,材料中细小颗粒的分布十分均匀。在较高的放大倍数下(图3b)可见这些颗粒的边缘呈不规则的锯齿状。能谱面扫图3d,e和能谱分析图3f表明,这些微米级颗粒由Al和La元素组成,可推断其成分为Al11La3。使用截距法和面积法测量统计多张SEM图片中的Al11La3颗粒,可得其平均尺寸为3.2 μm,体积分数为7.94%。这个结果,与完全反应后的理论值8.02%十分接近,据此可认为La2O3的反应完全。但是,由于本文的烧结温度较高,Al11La3的尺寸较大[20]。使用更高倍数的SEM可以发现,材料中弥散分布有大量纳米级的针状相(图3c),推测其为另一种反应产物Al2O3。
图3
图3
复合材料的低倍和高倍SEM照片、元素面扫和能谱分析
Fig.3
SEM images of composite with low (a, b) and high magnifications (c), EDS mapping (d, e) of the same position of (b), and EDS result of position A (f)
图4给出了复合材料的TEM照片和对应位置的能谱分析。对图4a中微米级的A相衍射斑点(图4b)进行标定,可进一步确认A相为Al11La3。图4c~e分别给出了与图4a相同位置的元素Al、La和O的面扫结果。可以看出,除了微米级的Al11La3相,材料中还生成了大量纳米级的针状Al2O3,其长度约为150 nm,宽度约为10 nm。生成纳米尺寸Al2O3的主要原因:首先,原料中的La2O3即为纳米尺寸。其次,Al与La2O3的反应是通过热压烧结过程中的固相扩散控制的,Al2O3在点接触处成核且O在Al中的扩散速率低,使Al2O3的尺寸为纳米级。最后,生成的Al2O3粗化率极低,不易长大[19, 22]。进一步的高分辨TEM观察(图4f)发现,Al2O3与基体界面的结合良好。
图4
图4
复合材料的TEM照片
Fig.4
TEM images of composite (a) macrostructure and Al11La3 in the matrix, (b) a selected area diffraction pattern of A-phase, (c) (d) (e) EDS mapping of the same position of (a), (f) HRTEM image of Al2O3 with its FFT in the inset, and (g) grain size
从图4g可见,材料的晶粒尺寸在超细晶范围,截距法的测量统计结果表明,其晶粒尺寸约为350 nm。随着材料的晶粒尺寸变小,晶粒数量和晶界增多,使室温下位错的滑移变得困难,有助于使材料的强度提高。
图5
图5
纯铝基体的TEM照片和相同位置的能谱分析
Fig.5
STEM-BF image of Al matrix (a), and EDS mapping (b, c) of the same position of (a)
2.3 室温和350℃的高温拉伸性能
(Al11La3+Al2O3)/Al复合材料和对比材料的室温(Room temperature, RT)和350℃高温拉伸曲线,如图6所示,拉伸性能列于表1。可以看出,复合材料的室温屈服强度(Yield strength, YS)为292 MPa,抗拉强度(Ultimate tensile strength, UTS)为328 MPa,延伸率(Elongation, EL)为10.5%;350℃屈服强度为113 MPa,抗拉强度为119 MPa,延伸率为10.2%。与用相同工艺制备的纯铝相比,复合材料的室温和高温抗拉强度分别提高了约30%和19%。同时,本文制备的(Al11La3+Al2O3)/Al复合材料其性能也优于典型的耐热铝合金Al-5.3Cu-0.8Mg-0.6Ag和Al-9.4Si-1.9Cu-0.5Mg,这两种合金的350℃抗拉强度均低于100 MPa[6, 23, 24]。与同样有Al2O3增强体的(B4C+Al2O3)/Al复合材料对比,本文制备的复合材料其高温强度提升超20%[25]。
图6
图6
复合材料和铝基体的室温和350℃高温抗拉曲线
Fig.6
Tensile stress-strain curves of composite and Al matrix at RT (a) and 350℃ (b)
表1 复合材料和铝基体的拉伸性能
Table 1
Sample | RT | 350℃ | ||||
---|---|---|---|---|---|---|
YS/MPa | UTS/MPa | EL/% | YS/MPa | UTS/MPa | EL/% | |
Composite | 292±4 | 328±3 | 10.5±0.9 | 113±5 | 119±4 | 10.2±2.2 |
Al matrix | 208±8 | 252±3 | 18.5±1.0 | 99±6 | 100±4 | 15.2±2.0 |
其中
其中Al2O3的直接载荷传递的直接强化可表示为[28]
其中S为Al2O3的长径比,
Orowan的强化效果可表示为[29]
其中
表2 复合材料和铝基体的屈服强度计算
Table 2
/MPa | Al2O3 | Al11La3 | ||||
---|---|---|---|---|---|---|
/MPa | /MPa | /MPa | /MPa | |||
10 | 6 | 19 | 26 | 4 | 0 | 11 |
2.4 材料断口的形貌
材料样品的室温和350℃高温拉伸断口,如图7所示。可以看出,复合材料的室温拉伸断口(图7a)表现出典型的复合材料断口形貌,在Al基体区域出现大量的韧窝和撕裂棱,表明基体区域的断裂韧性很好。还发现许多较大的Al11La3颗粒。图7b给出了图7a中白色方框区域的放大图像,可观察到Al11La3颗粒上的裂纹。这表明,在拉伸过程中载荷传递使Al11La3开裂,并可能进一步导致材料断裂。高温拉伸断口与室温断口的不同特征是,未观察到Al11La3颗粒,表明在高温下微米级颗粒的载荷传递作用减弱,难以发生界面脱粘或颗粒断裂[30]。同时, Al基体的性能在高温下明显恶化[31]并在拉伸过程中发生晶界滑动,因此晶界不再有强化作用。但是,细小的纳米相可抑制晶界的滑动,从而提高材料的高温强度。在没有增强相的Al基体中位错不能形成堆积,大部分位错在晶界处湮灭。而复合材料中细小的纳米相可与位错产生交互作用,阻碍位错运动。因此,需要更多的能量才能使材料进一步的变形,从而提高了材料的强度。但是,纳米相的钉扎作用使位错堆积和应力集中,从而产生材料的沿晶断裂。高温断口呈现出明显的沿晶断裂特征,且表面存在大量的纳米颗粒(图7c,d),与上述文献报道相同。
图7
图7
复合材料的室温和350℃拉伸断口的SEM照片
Fig.7
SEM fractographs at RT (a, b) and 350℃ (c, d) for composites
3 结论
(1) 在铝粉中添加质量分数为8%的La2O3颗粒并用原位反应可制备(Al11La3+Al2O3)/Al复合材料。较高的球磨强度是激活原位反应的重要因素,在630℃烧结过程中原位反应基本完全,生成了微米级Al11La3和纳米级Al2O3。
(2) (Al11La3+Al2O3)/Al复合材料的室温强化机制主要为Al11La3和Al2O3的位错强化和载荷传递强化,而在高温下Al11La3的载荷传递作用减弱,强化机制是纳米Al2O3对晶界的钉扎。
(3) (Al11La3+Al2O3)/Al复合材料的350℃抗拉强度达到119 MPa并具有良好的延伸率,其性能优于目前应用在高温下的Al-Cu-Mg-Ag和Al-Si-Cu-Mg铝合金。
参考文献
A review on fabrication methods, reinforcements and mechanical properties of aluminum matrix composites
[J].
Aluminum matrix composites for industrial use: advances and trends
[J].
Deformation behavior and microstructure evolution of 7050 aluminum alloy during high temperature deformation
[J].
Experimental Investigation of Mechanical Properties of Aluminum Alloy at High and Low Temperatures
[J].
High temperature mechanical properties of Al-Si-Mg-(Cu) alloys for automotive cylinder heads
[J].
Microstructure, tensile properties and fracture behavior of high temperature Al-Si-Mg-Cu cast alloys
[J].
Dispersion strengthened Al-Fe-V-Si alloys
[J].
On the role of processing parameters in producing Cu/SiC metal matrix composites via friction stir processing: Investigating microstructure, microhardness, wear and tensile behavior
[J].
Enhancing high-temperature strength of B4C-6061Al neutron absorber material by in-situ Mg(Al)B2
[J].
Strong and ductile carbon nanotube/aluminum bulk nanolaminated composites with two-dimensional alignment of carbon nanotubes
[J].
Microstructure evolution and properties of graphene nanoplatelets reinforced aluminum matrix composites
[J].
In situ fabrication and microstructure of Al2O3 particles reinforced aluminum matrix composites
[J].
In situ fabrication of (α-Al2O3+Al3Zr)/Al composites in an Al-ZrO2 system
[J].
Formation of Al3Ti and Al2O3 from an Al-TiO2 system for preparing in-situ aluminium matrix composites
[J].
Revealing the strengthening and toughening mechanisms of Al-CuO composite fabricated via in-situ solid-state reaction
[J].
Optimization of Mg-Zn-Al-Ca-La Alloys for the Improvement of Casting Properties and Creep Resistance
[J].
Influences of different Zr additions on the microstructure, room and high temperature mechanical properties of an Al-7Si-0.4Mg alloy modified with 0.25%Er
[J].
Effect of rare-earth element additions on high-temperature mechanical properties of AZ91 magnesium alloy
[J].
Mechanical properties of nanometric Al2O3 particulate-reinforced Al-Al11Ce3 composites produced by friction stir processing
[J].
Microstructure and room and high temperature mechanical properties of ultrafine structured Al-5%Y2O3 and Al-5%La2O3 nanocomposites fabricated by mechanical alloying and hot pressing
[J].
The effect of milling conditions on microstructures and mechanical properties of Al/MWCNT composites
[J].
Design, microstructure and high temperature properties of in-situ Al3Ti and nano-Al2O3 reinforced 2024Al matrix composites from Al-TiO2 system
[J].This study was conducted to obtain a type of aluminum matrix composites exhibiting a good strength and certain ductility at high temperature. The 25 vol% TiO2-75 vol%2024 Al systems were selected to fabricate the (Al3Ti+Al2O3)/2024 Al composites with residual similar to 32 vol% Al matrix through powder metallurgy. The (Al3Ti+Al2O3)/2024 Al exhibits a good strength and certain ductility at high temperature as in the design. The microstructure of (Al3Ti+Al2O3)/2024 Al composites was investigated. It was discovered that the in-situ Al3Ti reinforcement was in coarse block-shaped particles of approximately 6.9 mu m in size and the Al-Al3Ti interface was clean. The Al2O3 particles were in the nano-scale and distributed in the Al matrix in a cluster form. The high temperature compression testing of the composites was conducted at the temperatures of 573 K, 623 K, 673 K, 723 K and 773 K with the strain rate of 10(-3) similar to 0.42 s(-1). The results demonstrated that the composites exhibited higher strength at the same high temperature than the other Al matrix composites with a similar volume fraction. The massive Al3Ti and Al2O3 phases played a load bearing role at high temperatures. The residual similar to 32 vol% Al matrix led the composites to acquire certain ductility. (C) 2018 Elsevier B.V.
Effect of Q-Al5Cu2Mg8Si6 phase on mechanical properties of Al-Si-Cu-Mg alloy at elevated temperature
[J].
Effect of rare earth Ce addition on the microstructure and mechanical properties of an Al-Cu-Mg-Ag alloy
[J].
Enhancing high-temperature strength of (B4C+Al2O3)/Al designed for neutron absorbing materials by constructing lamellar structure
[J].
Hall-Petch relation and boundary strengthening
[J].
Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy
[J].
On the strength of discontinuous silicon carbide reinforced aluminum composites
[J].
Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: A model for predicting their yield strength
[J].
Microstructure and mechanical properties of (B4C+Al2O3)/Al composites designed for neutron absorbing materials with both structural and functional usages
[J].
/
〈 |
|
〉 |
