Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (2): 152-160    DOI: 10.11901/1005.3093.2022.057
  研究论文 本期目录 | 过刊浏览 |
2195-2219异种铝合金焊接接头的微观组织和性能
聂敬敬, 龚政轩, 孙京丽(), 杨斯达, 夏先朝, 徐爱杰
上海航天精密机械研究所 上海 201600
Microstructure and Properties of Butt Welding Joints of 2195-2219 Al-alloy Plates
NIE Jingjing, GONG Zhengxuan, SUN Jingli(), YANG Sida, XIA Xianchao, XU Aijie
Shanghai Spaceflight Precision Machinery Institute, Shanghai 201600, China
引用本文:

聂敬敬, 龚政轩, 孙京丽, 杨斯达, 夏先朝, 徐爱杰. 2195-2219异种铝合金焊接接头的微观组织和性能[J]. 材料研究学报, 2023, 37(2): 152-160.
Jingjing NIE, Zhengxuan GONG, Jingli SUN, Sida YANG, Xianchao XIA, Aijie XU. Microstructure and Properties of Butt Welding Joints of 2195-2219 Al-alloy Plates[J]. Chinese Journal of Materials Research, 2023, 37(2): 152-160.

全文: PDF(33866 KB)   HTML
摘要: 

用钨极氩弧焊(TIG)和变极性等离子弧焊(VPPA)对2195与2219异种铝合金进行平板对接焊,研究了不同焊接方法和在有无保护气氛条件下焊接接头的显微组织和性能。结果表明,在用TIG和VPPA工艺焊接的接头区域都没有出现宏观热裂纹,能量密度高、焊接快和热输入量小的VPPA工艺使焊缝区域较窄;异种铝合金焊缝接头熔合线附近的主要析出相为θ相,在焊缝区域有α-Al与θ相组成的共晶组织;在TIG工艺和有气氛保护的VPPA工艺的焊接接头区域没有出现局部软化现象,焊缝区域的硬度与2219侧母材相同。TIG工艺的焊接接头,其抗拉强度更高。

关键词 金属材料铝合金21952219焊接接头微观组织力学性能    
Abstract

Butt welding joints of 2195 and 2219 Al-alloy plates were prepared by tungsten argon arc welding (TIG) and variable polarity plasma arc welding (VPPA) respectively while applying argon shielding and no argon shielding, and then the influence of processing parameters on the microstructure of the welding joints were assessed by means of metallographic microscope, scanning electron microscope (SEM), hardness tester and tensile testing machine. The results show that no macroscopic thermal cracks were detected in the welding seam of the joints prepared by TIG and VPPA welding processes, however the VPPA welding process results in narrower welding seam due to its high speed processing with low heat input whilst high energy density. The main precipitates near the fusion line of the weld joints are θ-phase, while eutectic microstructure of α-Al and θ-phase exists in the weld seam. No local softening existed in welded joints prepared by TIG and VPPA with argon shielding, correspondingly, the hardness of the weld seam is more or less the same as that of the base metal of 2219 Al-alloy side, and the welding joints prepared by TIG possess higher tensile strength.

Key wordsmetallic materials    aluminum alloy    2195    2219    welded joint    microstructure    mechanical property
收稿日期: 2022-01-17     
ZTFLH:  TG406  
作者简介: 聂敬敬,男,1995年生,硕士生
ElementCuSiMnFeZrVTiMgLiAgAl
21953.84--0.040.10--0.480.910.39Bal.
22196.480.490.320.230.20.080.06---Bal.
23253.6~4.20.060.5~0.70.06---1.0~1.5--Bal.
表1  母材和焊丝的成分
Sample No.Welding methodProcess parameters
1#TIG welding with two layers on the front and one layer back sealingWelding current 180~220 A, arc length 4 mm, welding speed 200 mm·min-1
2#VPPA welding on the front with back sealing by TIG weldingPositive current 207 A, negative current 243 A, welding speed 200 mm·min-1, argon flow 25 L·min-1, back sealing weld current 180 A
3#VPPA welding without argon protection and sealing on the backPositive current 207 A, negative current 243 A, welding speed 200 mm·min-1
表2  焊接方式和工艺参数
图1  1#样品不同区域的金相照片
图2  2#样品不同区域位置的金相照片
图3  3#样品不同区域位置的金相照片
图4  1#样品2195侧熔合线附近的组织
图5  不同样品熔合线区域的组织
ElementAlCuMgCOAgZr
Point 188.23.80.46.01.30.40.0
Point 247.834.20.513.53.70.30.1
Point 388.44.40.46.10.50.20.0
Point 452.531.00.411.44.10.60.0
Point 586.23.10.39.01.30.00.0
Point 651.431.90.412.73.20.50.0
表3  图5区域中不同位置点的成分
图6  不同样品焊缝区域的组织
ElementAlCuMgCOAgZr
Point 190.22.10.16.60.80.10.1
Point 241.446.80.37.44.20.00.0
Point 325.147.90.115.19.90.20.2
Point 489.82.80.06.20.70.20.2
Point 563.021.40.212.03.10.20.2
Point 632.352.00.26.76.41.60.2
Point 787.51.70.09.70.90.00.3
Point 835.345.50.313.94.80.00.3
Point 944.637.80.212.54.60.10.2
表4  图6区域中不同位置点的成分
图7  不同焊接方法的样品的力学性能
图8  不同焊接方法的焊接接头拉伸后的宏观形貌
图9  焊接方法不同的样品的微观硬度分布
1 Deng Y L, Zhang X M. Progress of aluminum and aluminum alloy materials [J]. Trans. Nonferrous Met. Soc.China, 2019, 29 (9): 2115
1 邓运来, 张新明. 铝及铝合金材料进展 [J]. 中国有色金属学报, 2019, 29(9): 2115
2 Zhao H H, Gao H, Hu L, et al. Optimization of drawing friction plug welding process and mechanical properties of 2219 aluminum alloy sheet [J]. China Weld., 2021, 6: 48
2 赵慧慧, 高 焓, 胡 蓝 等. 2219铝合金薄板拉拔式摩擦塞焊工艺及力学性能优化 [J]. 焊接, 2021, 6: 48
3 Chen S, Zhang H, Jiang X, et al. Mechanical properties of electric assisted friction stir welded 2219 aluminum alloy [J]. J. Manuf. Process., 2019, 44: 197
doi: 10.1016/j.jmapro.2019.05.049
4 Wang X L, Wei Y H. Application and development of metal matrix composites in aerospace [J]. Sci. Technol. Innovation. Herald, 2016, 13(6): 16
4 王秀丽, 巍永辉. 浅谈金属基复合材料在航空航天领域的应用与发展 [J]. 科技创新导报, 2016, 13(6): 16
5 Tang J M. Development status and prospect of aerospace materials [J]. Spacecr. Environ. Eng., 2013, 30(2): 115
5 唐见茂. 航空航天材料发展现状及前景 [J]. 航天器环境工程, 2013, 30(2): 115
6 Wu X L, Liu M, Zang J X, et al. Research progress of Al Li alloys and aerospace applications [J]. Mater. Rep., 2016, 30 (S2): 571
6 吴秀亮, 刘 铭, 臧金鑫 等. 铝锂合金研究进展和航空航天应用 [J]. 材料导报, 2016, 30(S2): 571
7 Kablov E N, Antipov V V, Oglodkova J S, et al. Development and application prospects of aluminum-lithium alloys in aircraft and space technology [J]. Metallurgist, 2021, 65(1-2): 72
doi: 10.1007/s11015-021-01134-9
8 Yuan J, Pang J, Xie G, et al. In situ observation of high-temperature microstructure evolution and phase transformation of 2195 Al-Li alloy [J]. Metall. Mater. Trans. A, 2019, 50(3): 1509
doi: 10.1007/s11661-018-05106-8
9 Fang Z, Wang F, Yin Y H, et al. Microstructure and properties of 2195/2219 dissimilar friction stir welded joints [J]. Rare Met. Mater. Eng., 2017, 46 (7): 2017
9 房 湛, 王 凡, 尹玉环 等. 2195/2219异种材料搅拌摩擦焊接头的组织与性能 [J]. 稀有金属材料与工程, 2017, 46(7): 2017
10 Chen Y L, Li J F, Zhang X H, et al. Microstructure of 2195 Al Li alloy friction stir welded joint [J]. Trans. Nonferrous Met. Soc. China, 2016, 26(5): 964
10 陈永来, 李劲风, 张绪虎 等. 2195铝锂合金摩擦搅拌焊接头组织 [J]. 中国有色金属学报, 2016, 26(5): 964
11 Wang H L, Zeng X H, Zhang X M, et al. Microstructure and mechanical property of friction stir weld joints of dissimilar Al-alloys 5083 and 6061 [J]. Chin. J. Mater. Res., 2018, 32(6): 473
doi: 10.11901/1005.3093.2017.634
11 王洪亮, 曾祥浩, 张欣盟 等. 5083和6061铝合金异种搅拌摩擦焊接接头的组和性能 [J]. 材料研究学报, 2018, 32(6): 473
doi: 10.11901/1005.3093.2017.634
12 Agilan M, Phanikumar G, Sivakumar D. Tensile behaviour and microstructure evolution in friction stir welded 2195-2219 dissimilar aluminium alloy joints [J]. Weld World, 2022, 66(2): 227
doi: 10.1007/s40194-021-01217-w
13 Tao Y, Zhang Z, Yu B H, et al. Friction stir welding of 2060-T8 Al-Li alloy. Part I: Microstructure evolution mechanism and mechanical properties [J]. Mater. Charact., 2020, 168
14 Zhang H, Qin H L, Wu H Q. Effect of process parameters on mechanical properties of 2195 Al Li alloy friction stir welded joint [J]. Trans. China Weld. Inst., 2016, 37(4): 19
14 张 华, 秦海龙, 吴会强. 工艺参数对2195铝锂合金搅拌摩擦焊接头力学性能的影响 [J]. 焊接学报, 2016, 37(4): 19
15 Chu Q, Li W Y, Yang X W, et al. Microstructure and mechanical optimization of probeless friction stir spot welded joint of an Al-Li alloy [J]. J. Mater. Sci. Technol., 2018, 34(10): 1739
doi: 10.1016/j.jmst.2018.03.009
16 Ogbonna O S, Akinlabi S A, Madushele N, et al. Application of MIG and TIG welding in automobile industry [J]. J. Phys.: Conf. Ser., 2019, 1378(4): 042065
17 Yan Z, Chen S, Jiang F, et al. Control of gravity effects on weld porosity distribution during variable polarity plasma arc welding of aluminum alloys [J]. J. Mater. Process. Technol., 2020, 282: 116693
doi: 10.1016/j.jmatprotec.2020.116693
18 Zhang D, Wang G, Wu A, et al. Study on the inconsistency in mechanical properties of 2219 aluminium alloy TIG-welded joints [J]. J. Alloys Compd., 2019, 777: 1044
doi: 10.1016/j.jallcom.2018.10.182
19 Hong H, Han Y, Yao Q, et al. Microstructural investigation of VPPA-GMAW welded 7A52 aluminum alloys [J]. J. Mater. Eng. Perform., 2018, 27(10): 5571
doi: 10.1007/s11665-018-3450-3
20 Chen Q H, Lin S B, Yang C L, et al. Effect of ultrasound on heterogeneous nucleation in TIG welding of Al-Li alloy [J]. Acta Metall. Sin. (Engl. Lett.), 2016, 29(12): 1081
doi: 10.1007/s40195-016-0483-1
21 Li Y B, Meng D Q, Liu K Z, et al. Simulation of microstructure evolution during solidification of welding pool [J]. Trans. China Weld. Inst., 2010, 31(4): 57
21 李玉斌, 蒙大桥, 刘柯钊 等. 焊接熔池凝固过程组织演变模拟 [J]. 焊接学报, 2010, 31(4): 57
22 Chen L, Wang C, Mi G, et al. Effects of laser oscillating frequency on energy distribution, molten pool morphology and grain structure of AA6061/AA5182 aluminum alloys lap welding [J]. J. Mater. Res. Technol., 2021, 15: 3133
doi: 10.1016/j.jmrt.2021.09.141
23 Yuan L L, Wang W, Chen X Y. Research progress of 2195 aluminum lithium welding technology [J]. China Weld., 2020, 9: 38
23 元琳琳, 王 炜, 陈晓宇. 2195铝锂焊接焊接技术研究进展 [J]. 焊接, 2020, 9: 38
24 Li H, Zou J, Yao J, et al. The effect of TIG welding techniques on microstructure, properties and porosity of the welded joint of 2219 aluminum alloy [J]. J. Alloys Compd., 2017, 727: 531
doi: 10.1016/j.jallcom.2017.08.157
25 Peng H M, Li X Q, Jiang R P. Effect of solution ultrasonic treatment on micro segregation of 7050 aluminum alloy ingot [J]. Trans. Beijing Inst. Technol., 2016, 36 (11): 1105
25 彭洪美, 李晓谦, 蒋日鹏. 溶体超声处理对7050铝合金铸锭微观偏析的影响 [J]. 北京理工大学学报, 2016, 36(11): 1105
26 Zobac O, Kroupa A, Zemanova A, et al. Experimental description of the Al-Cu binary phase diagram [J]. Metall. Mater. Trans. A, 2019, 50(8): 3805
doi: 10.1007/s11661-019-05286-x
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[12] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[13] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[14] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[15] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.