Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (2): 111-119    DOI: 10.11901/1005.3093.2022.124
  研究论文 本期目录 | 过刊浏览 |
重力对Sn-20% Ni合金的初生相形态和包晶反应的影响
张佳俊1,2, 罗兴宏1,2(), 孔亚非1,2, 张桂圆1,2, 李洋1
1.中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
2.中国科学技术大学材料科学与工程学院 沈阳 110016
Effect of Gravity on Primary Phase Morphology and Peritectic Reaction of Sn-20% Ni Alloy
ZHANG Jiajun1,2, LUO Xinghong1,2(), KONG Yafei1,2, ZHANG Guiyuan1,2, LI Yang1
1.Shi -Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

张佳俊, 罗兴宏, 孔亚非, 张桂圆, 李洋. 重力对Sn-20% Ni合金的初生相形态和包晶反应的影响[J]. 材料研究学报, 2023, 37(2): 111-119.
Jiajun ZHANG, Xinghong LUO, Yafei KONG, Guiyuan ZHANG, Yang LI. Effect of Gravity on Primary Phase Morphology and Peritectic Reaction of Sn-20% Ni Alloy[J]. Chinese Journal of Materials Research, 2023, 37(2): 111-119.

全文: PDF(10753 KB)   HTML
摘要: 

使用高度为50 m的落管研究了Sn-20% (质量分数) Ni包晶合金在重力和微重力作用下的凝固行为。用金相显微镜(OM)观察了合金的凝固组织并使用图像处理软件IPP(Image Pro Plus)统计了样品中的初生相、包晶相以及终凝相的含量,使用能谱仪(EDS)和X射线衍射(XRD)仪分析了样品凝固组织中的成分分布和组成相。结果表明,Sn-20%Ni包晶合金的凝固以初生相在固液界面前沿形核、枝晶生长和包晶反应的形式进行,重力对初生相的生成和包晶反应都有显著的影响,在微重力作用下的微观组织配比、分布以及合金元素的分布都与在重力作用下明显不同。在重力的作用下残余初生相的含量和残余初生相和包晶相的总量总是比在重力作用下的低,而包晶相的含量则总是比在微重力作用下的高。同时,样品中溶质元素的分布与残余初生相和包晶相的总量的分布趋势基本一致。结果表明,微重力环境有利于Sn-20% Ni合金初生相的形核和长大,而重力环境则促进包晶反应,其原因与重力导致的浮力对流和晶核沉积有关。

关键词 金属材料Sn-Ni合金包晶反应落管微重力凝固    
Abstract

The solidification behavior of a Sn-20% (mass fraction) Ni peritectic alloy in conditions of ordinary gravity and microgravity were comparatively studied by using a 50-meter-high drop tube. The solidified microstructure of the alloy was observed by optical metalloscopy (OM), the percentages of residual primary phase, peritectic phase and final solidification phase in the samples were counted by IPP (Image Pro Plus) software, and the solute distribution and phase composition in the samples were determined by means of energy dispersive spectrometer (EDS) and X-ray diffractometer (XRD). The results show that the solidification process of Sn-20% Ni may involve the primary phase nucleation at solid-liquid interface front, dendrite growth and peritectic reaction. Gravity has significant effect on both the primary phase formation and peritectic reaction, resulting in significant difference in the partition and distribution of phases as well as the distribution of alloying elements obtained in the conditions of microgravity and ordinary gravity respectively. The amount of residual primary phase and the total amount of residual primary phase plus peritectic phase in ordinary gravity condition is always lower than those in microgravity condition, while the quantity of peritectic phase is always higher. In addition, the distribution of solute element in the samples are basically consistent with those of the total amount of residual primary phase plus peritectic phase. These results indicate that the microgravity environment is favorable to the formation and growth of primary phase of the Sn-20% Ni alloy, in the contrary, the gravity environment promotes peritectic reaction, which is related to buoyancy convection and crystal nucleus deposition induced by gravity.

Key wordsmetallic materials    Sn-Ni alloy    peritectic reaction    drop tube    microgravity    solidification
收稿日期: 2022-03-04     
ZTFLH:  TG146.1  
基金资助:载人空间站工程项目
作者简介: 张佳俊,男,1998年生,硕士生
SampleHeating time/sHeating power/kWHeating length/mmInfrared emittance/%Cooling condition
μg240.3105Drop + rapid quenching
1g240.3105Sustained for 3.2 s + rapid quenching
表1  Sn-20% Ni合金的微重力与重力凝固实验参数
图1  Ni-Sn二元合金的平衡相图
图2  Sn-20% Ni合金的铸态凝固组织
图3  Sn-20% Ni合金重力与微重力样品的温度-时间曲线
图4  Sn-20% Ni合金重力和微重力样品的纵截面宏观组织
图5  Sn-20% Ni合金重力样品和微重力样品纵截面组织的高倍照片
图6  Sn-20% Ni合金样品中心轴线处枝晶的形态
图7  Sn-20% Ni合金样品的XRD衍射谱
图8  Sn-20% Ni合金样品各相比例沿凝固方向的分布
图9  Sn-20% Ni合金沿凝固方向与中心轴线不同距离处Ni元素含量的分布
图10  Sn-20% Ni合金1g重力和μg微重力样品距离熔化界面不同处径向Ni元素含量的分布
1 Liu Q, Zhao H D, Liu G, et al. Research progress on decorative Copper-Zinc imitation Gold alloy [J]. China Resources Comprehensive Utilization, 2018, 36(11): 123
1 柳 泉, 赵宏达, 刘 革 等. 装饰用铜锌仿金合金的研究进展 [J]. 中国资源综合利用, 2018, 36(11): 123
2 Wang J, Yin J L, Yan B. Development and applications of Cu-Ni-Sn alloy [J]. Nonferrous Metal Materials and Engineering, 2004, (04): 184
2 王 军, 殷俊林, 严 彪. Cu-Ni-Sn合金的发展和应用 [J]. 上海有色金属, 2004, (04): 184
3 Curtulo J P, Dias M, Bertelli F, et al. The application of an analytical model to solve an inverse heat conduction problem: Transient solidification of a Sn-Sb peritectic solder alloy on distinct substrates [J]. J. Manuf. Process., 2019, 48: 164
doi: 10.1016/j.jmapro.2019.10.029
4 Kumar A, Londhe S, Dandekar T, et al. Effect of cooling rate on the precipitation behavior of a Fe-Cr-Ni alloy [J]. T. Indian. I. Metal., 2020, 73(7): 1961
5 Gao H J, Zhang Z F, Wang H N, et al. Predicting resistance of YBCO tape under direct current impact based on LM neural network [J]. Chinese Journal of Rare Metals, 2021, 45(01): 55
5 高惠娟, 张志丰, 王浩男 等. YBCO带材直流冲击特性的LM神经网络预测 [J]. 稀有金属, 2021, 45(01): 55
6 Akdeniz M V, Mekhrabov A O, Pehlivanoglu M K. Solidification behaviour of bulk glass-forming alloy systems [J]. J. Alloy. Compd., 2005, 386(1-2): 185
doi: 10.1016/j.jallcom.2004.06.019
7 Gao J, Volkmann T, Roth S, et al. Phase formation in undercooled NdFeB alloy droplets [J]. J. Magn. Magn. Mater., 2001, 234(2): 313
doi: 10.1016/S0304-8853(01)00388-2
8 Gao P, Liu T, Dong M, et al. Magnetostrictive gradient in Tb0.27-Dy0.73Fe1.95 induced by high magnetic field gradient applied during solidification [J]. Funct. Mater. Lett., 2016, 9(1): 1650003
doi: 10.1142/S179360471650003X
9 Sun S W. Growth and characterization of CdZnTe single crystals [D]. Beijing: University of Chinese Academy of Sciences, 2014
9 孙士文. 碲锌镉单晶生长与晶体质量研究 [D]. 北京: 中国科学院大学, 2014
10 Wang Y Y, Luo X H. Solidification behavior of TC20 alloy under microgravity researched using drop tube [J]. Chinese Journal of Rare Metals, 2018, 42(09): 897
10 王亚亚, 罗兴宏. 利用落管研究微重力对TC20合金凝固行为的影响 [J]. 稀有金属, 2018, 42(09): 897
11 Zhang N N, Luo X H, Feng S B, et al. Mechanism of gravity effect on solidification microstructure of eutectic alloy [J]. J. Mater. Sci. Technol., 2014, 30(5): 499
doi: 10.1016/j.jmst.2013.11.009
12 Luo X H, Wang Y Y, Li Y. Role of hydrostatic pressure and wall effect in solidification of TC8 alloy [J]. NPJ Microgravity, 2019, 5: 5
doi: 10.1038/s41526-019-0064-5
13 Yu J D, Liu Y, Pan X H, et al. A review on InGaSb growth under microgravity and terrestrial conditions towards future crystal growth project using Chinese recovery satellite SJ-10 [J]. Microgravity. Sci. Tec., 2016, 28(2): 143
14 Peng P, Li S Y, Zheng W C, et al. Macrosegregation and thermosolutal convection-related freckle formation in directionally solidified Sn-Ni peritectic alloy in crucibles with different diameters [J]. T. Nonferr. Metal. Soc., 2021, 31(10): 3096
doi: 10.1016/S1003-6326(21)65718-7
15 Peng P, Li X Z, Li J G. Novel morphologies of intermetallic phases in Sn-Ni peritectic alloys [J]. Mater. Lett., 2017, 200: 31
doi: 10.1016/j.matlet.2017.04.091
16 Zheng S, Shi P, Cheng X. Lithium storage properties of electro-deposited Sn-Ni alloy electrode in lithiumion battery [J]. Chinese Journal of Power Sources, 2006, 30(1): 24
17 Wan C Y, Liu X Y, Ye J Y. Tailorable deposition of Sn-Ni alloy from a pyrophosphate bath with an adjustable Sn:Ni molar ratio [J]. Surf. Coat. Tech., 2019, 369: 244
doi: 10.1016/j.surfcoat.2019.04.070
18 Wang Y Y. Investigation of solidification of several titanium, aluminum alloys and aluminum matrix composite under micro-gravity [D]. Hefei: University of Science and Technology of China, 2018
18 王亚亚. 几种钛、铝合金与铝基复合材料微重力凝固研究 [D]. 合肥: 中国科学技术大学, 2018
19 Nagasaki S, Hirabayashi M. Binary Alloy Phase Diagrams [M]. Tokyo: AGNE Gijutsu, Center Co Ltd, 2002, 7
20 Zhang N N. Solidification behavior of eutectic alloy under falling tube microgravity and gravity environment [D]. Beijing: University of Chinese Academy of Sciences, 2013
20 张楠楠. 共晶合金在落管微重力与重力环境下的凝固行为研究 [D]. 北京: 中国科学院大学, 2013
21 Hu H Q. Principle of Metal Solidification [M]. Beijing: China Machine Press, 2000
21 胡汉起. 金属凝固原理 [M]. 北京: 机械工业出版社, 2000
22 Ren Y H. Investigation of solidification of Ni-based binary single crystal alloys under microgravity and normal gravity conditions in drop tube [D]. Beijing: University of Chinese Academy of Sciences, 2014
22 任玉虎. 镍基二元单晶合金在落管微重力与重力环境下的凝固行为研究 [D]. 北京: 中国科学院大学, 2014
23 Luo X H, Jin D Y, Ren Y H. Growth of single crystal alloy under microgravity condition [J]. Materials China, 2017, 36(04): 22
23 罗兴宏, 晋冬艳, 任玉虎. 微重力条件下单晶合金的凝固生长 [J]. 中国材料进展, 2017, 36(04): 22
24 Kong Y F, Luo X H, Li Y, et al. Gravity-induced solidification segregation and its effect on dendrite growth in Al-2.8% Cu alloy [J]. Microgravity. Sci. Tech., 2021, 33(6): 72
doi: 10.1007/s12217-021-09913-4
25 Feng S B, Luo X H. Dendrite growth of SRR99 Nickel-base single crystal superalloy under microgravity condition formed by long drop tube [J]. Chinese Journal of Rare Metals, 2012, 36(03): 341
25 封少波, 罗兴宏. SRR99镍基单晶高温合金在落管微重力环境下的枝晶生长行为研究 [J]. 稀有金属, 2012, 36(03): 341
26 Herlach D M. Nonequilibrium solidification of undercooled metallic melts [J]. Materials Science and Engineering Reports, 1994, 12(4-5): 177
doi: 10.1016/0927-796X(94)90011-6
27 Feng S B, Zhang N N, Luo X H. Influence of segregation on liquid density in the mushy zone of DZ483 Ni-based superalloy [J]. Acta. Metall. Sin., 2012, 48(05): 541
doi: 10.3724/SP.J.1037.2012.00037
27 封少波, 张楠楠, 罗兴宏. 偏析对DZ483镍基高温合金糊状区内液相密度的影响 [J]. 金属学报, 2012, 48(05): 541
28 Miao N, Wang J, Liu Z H, et al. Dynamic numerical simulation analysis and transient experimental test of internal magnetic field for magneto-rheological damper during the impact [J]. Chinese Journal of Applied Mechanics, 2020, 37(04): 1763
28 苗 楠, 王 菁, 刘战合 等. 微重力落塔实验中的流体行为仿真与分析 [J]. 应用力学学报, 2020, 37(04): 1763
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.