Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (1): 1-9    DOI: 10.11901/1005.3093.2022.248
  研究论文 本期目录 | 过刊浏览 |
碗状C@FeS2@NC复合材料的制备及其电化学性能
刘东璇, 陈平(), 曹新荣, 周雪, 刘莹
大连理工大学化工学院 精细化工国家重点实验室 大连 116024
Preparation and Electrochemical Properties of Bowl-shaped C@FeS2@NC Composites
LIU Dongxuan, CHEN Ping(), CAO Xinrong, ZHOU Xue, LIU Ying
State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
引用本文:

刘东璇, 陈平, 曹新荣, 周雪, 刘莹. 碗状C@FeS2@NC复合材料的制备及其电化学性能[J]. 材料研究学报, 2023, 37(1): 1-9.
Dongxuan LIU, Ping CHEN, Xinrong CAO, Xue ZHOU, Ying LIU. Preparation and Electrochemical Properties of Bowl-shaped C@FeS2@NC Composites[J]. Chinese Journal of Materials Research, 2023, 37(1): 1-9.

全文: PDF(14609 KB)   HTML
摘要: 

在二氧化硅微球表面包覆一层酚醛树脂并在高温下将其转化为碳壳,然后进行溶剂热反应、多巴胺包覆、高温硫化以及氢氧化钠刻蚀,制备出碗状C@FeS2@NC(氮掺杂碳层)复合材料。这种复合材料具有开放性三维碗状结构,能释放体积变化产生的应力,其较大的比表面积(70.67 m2·g-1)有很多的活性点位。内外双层碳壳提高了这种复合材料的导电性并提供了稳定的机械结构,外层NC具有很好的保护作用。将这种复合材料用作锂离子电池负极,在0.2 A·g-1电流密度下首圈放电比容量和充电比容量分别为954.3 mAh·g-1和847.2 mAh·g-1,对应的首圈库伦效率为88.78%。循环100圈后,其放电比容量稳定在793.8 mAh·g-1

关键词 复合材料锂离子电池负极材料过渡金属硫化物电化学性能    
Abstract

The bowl-like C@FeS2@NC (nitrogen doped carbon layer) composites were prepared via a multi-step process, namely the silicon dioxide microspheres were firstly coated with phenolic resin and then converted into carbon shell at high temperature, soon after which were subjected to solvothermal reaction, dopamine coating, high temperature vulcanization and sodium hydroxide etching. This composite material has an open three-dimensional bowl-like structure, which can well release the stress caused by volume change. Its large specific surface area (70.67 m2·g-1) has a lot of active sites. The double carbon shell composite consisted of an inner and an outer carbon shells, as a stable mechanical framework, can enhance the electrical conductivity, while the outer NC has a good protective effect. When this composite material is used as the negative electrode of lithium-ion battery, the discharge specific capacity and charge specific capacity of the first turn are 954.3 mAh·g-1 and 847.2 mAh·g-1, respectively at the current density of 0.2 A·g-1, and the corresponding Coulomb efficiency of the first turn is 88.78%. After 100 cycles, the discharge specific capacity is stable at 793.8 mAh·g-1.

Key wordscomposite    lithium-ion batteries    anode materials    transition metal sulfides    electrochemical performance
收稿日期: 2022-04-29     
ZTFLH:  TM912  
基金资助:兴辽英才项目(XLYC1802085);国家自然科学基金(51873109);大连市科技创新基金重大项目(2019J11CY007)
作者简介: 刘东璇,男,1995年生,硕士生
图1  制备碗状C@FeS2@NC复合材料的示意图
图2  C@FeS2@NC的XRD谱和拉曼谱
图3  C@FeS2@NC样品的氮气吸附-脱附等温线和孔径分布曲线
图4  C@FeS2@NC的XPS全谱图、Fe 2p高分辨率谱、S 2p高分辨率谱、C 1s高分辨率谱和N 1s高分辨率谱
图5  SiO2@RF、SiO2@C、SiO2@C@Fe-G、SiO2@C@Fe-G@PDA不同放大倍数的SEM照片、SiO2@C@FeS2@NC不同放大倍数的SEM照片以及碗状C@FeS2@NC不同放大倍数的SEM照片
图6  SiO2@RF的TEM照片、碗状C@FeS2@NC不同放大倍数的TEM照片、碗状C@FeS2@NC的HRTEM图,以及碗状C@FeS2@NC对应的元素面分布
ElementsCNOSFeCu
Contents54.8610.866.369.514.3214.06
表1  C@FeS2@NC各组分的含量(质量分数,%)
图7  C@FeS2@NC在0.1 mV·s-1扫描速率下的CV曲线
图8  碗状C@FeS2@NC复合材料的电化学性能
图9  C@FeS2@NC和CoS2@FeS2在1 A·g-1电流密度下的长循环性能和库伦效率
图10  C@FeS2@NC在1 A·g-1电流密度下循环500次后的SEM图以及 C@FeS2@NC和C@FeS2在1.2 V下循环3次后的EIS谱
1 Chiang Y M. Building a better battery [J]. Science, 2010, 330: 1485
doi: 10.1126/science.1198591
2 Yang Z G, Zhang J L, Kintner-Meyer M C W, et al. Electrochemical energy storage for green grid [J]. Chem. Rev., 2011, 111: 3577
doi: 10.1021/cr100290v pmid: 21375330
3 Liu Q, Hao S Y, Feng D, et al. Research progress of anode materials for lithium ion battery [J]. Acta Mater. Compos. Sin., 2022, 39: 1446
3 刘 琦, 郝思雨, 冯 东 等. 锂离子电池负极材料研究进展 [J]. 复合材料学报, 2022, 39: 1446
4 Huang J J, Li Z K, Yang S Z, et al. Research progress of composite anode materials with high-capacity for lithium-ion batteries [J]. Car. Tech., 2019, 38(3): 1
4 黄家骏, 李子坤, 杨书展 等. 锂离子电池用高容量复合负极材料的研究进展 [J]. 炭素技术, 2019, 38(3): 1
5 Xie L L, Yang D S, Leng J. Synthesis and formation mechanism of lithium battery high-capacity anode material TiNb2O7 [J]. Chin. J. Mater. Res., 2020, 34: 385
5 谢礼兰, 杨冬升, 凌 静. 高容量锂电池负极材料TiNb2O7的合成及其机理 [J]. 材料研究学报, 2020, 34: 385
doi: 10.11901/1005.3093.2019.568
6 Zhang Y R, Lu F, Pan L, et al. Improved cycling stability of NiS2 cathodes through designing a "kiwano" hollow structure [J]. J. Mater. Chem., 2018, 6A: 11978
7 Jiao Y C, Mukhopadhyay A, Ma Y, et al. Ion transport nanotube assembled with vertically aligned metallic MoS2 for high rate lithium-ion batteries [J]. Adv. Energy Mater., 2018, 8: 1702779
doi: 10.1002/aenm.201702779
8 Pei J, Geng H B, Ang E H, et al. Controlled synthesis of hollow C@TiO2@MoS2 hierarchical nanospheres for high-performance lithium-ion batteries [J]. Nanoscale, 2018, 10: 17327
doi: 10.1039/C8NR05451G
9 Wang H H, Lu S T, Chen Y, et al. Graphene/Co9S8 nanocomposite paper as a binder-free and free-standing anode for lithium-ion batteries [J]. J. Mater. Chem., 2015, 3A: 23677
10 Xie H Q, Chen M, Wu L M. Hierarchical nanostructured NiS/MoS2/C composite hollow spheres for high performance sodium-ion storage performance [J]. ACS Appl. Mater. Interfaces, 2019, 11: 41222
doi: 10.1021/acsami.9b11078
11 Xue H L, Jiao Q Z, Du J Y, et al. Hollow MoS2/rGO composites as high-performance anode materials for lithium-ion batteries [J]. Ionics, 2019, 25: 4659
doi: 10.1007/s11581-019-03041-1
12 Wang H J, Ma J J, Liu S, et al. CoS/CNTs hybrid structure for improved performance lithium ion battery [J]. J. Alloys Compd., 2016, 676: 551
doi: 10.1016/j.jallcom.2016.03.132
13 Xie Q, Xu Y X, Zhou Y C, et al. Preparation and lithium storage performance of rice-like core-shell FeS2/C nanoparticles [J]. CIESC J., 2021, 72: 2849
13 夏 青, 徐宇兴, 周运成 等. 核壳结构米粒状FeS2/C纳米材料制备及储锂性能研究 [J]. 化工学报, 2021, 72: 2849
14 Zhang H W, Noonan O, Huang X D, et al. Surfactant-free assembly of mesoporous carbon hollow spheres with large tunable pore sizes [J]. ACS Nano, 2016, 10: 4579
doi: 10.1021/acsnano.6b00723 pmid: 27050771
15 Ding X D, Du C F, Li J R, et al. FeS2 microspheres wrapped by N-doped rGO from an Fe-based ionic liquid precursor for rechargeable lithium ion batteries [J]. Sustain. Energy Fuels, 2019, 3: 701
doi: 10.1039/C8SE00539G
16 Li Q, Yuan D X, Wang X X, et al. Facile synthesis of metal disulfides nanoparticles encapsulated by amorphous carbon composites as high-performance electrode materials for lithium storage [J]. J. Alloys Compd., 2019, 773: 97
doi: 10.1016/j.jallcom.2018.09.247
17 Maimaiti H, Awati A, Zhang D D, et al. Synthesis and photocatalytic CO2 reduction performance of aminated coal-based carbon nanoparticles [J]. RSC Adv., 2018, 8: 35989
doi: 10.1039/C8RA06062B
18 Ferrari A C, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon [J]. Phys. Rev., 2000, 61B: 14095
19 Chen G Z, Xu D W, Chen P, et al. Constructing and optimizing hollow bird-nest-patterned C@Fe3O4 composites as high-performance microwave absorbers [J]. J. Magn. Magn. Mater., 2021, 532: 167990
doi: 10.1016/j.jmmm.2021.167990
20 Gao R Z, Li X D, Liu W F, et al. Synthesis and Li-storage performance of hierarchical spheroid composites of MgFe2O4/C [J]. Chin. J. Mater. Res., 2018, 32: 713
20 高荣贞, 李晓冬, 刘文凤 等. 分级结构类球形MgFe2O4/C复合材料的制备及其储锂性能 [J]. 材料研究学报, 2018, 32: 713
21 Wang H G, Wang Y H, Li Y H, et al. Exceptional electrochemical performance of nitrogen-doped porous carbon for lithium storage [J]. Carbon, 2015, 82: 116
doi: 10.1016/j.carbon.2014.10.041
22 Chen X L, Shi T, Zhong K L, et al. Capacitive behavior of MoS2 decorated with FeS2@carbon nanospheres [J]. Chem. Eng. J., 2020, 379: 122240
doi: 10.1016/j.cej.2019.122240
23 Yang D D, Zhao M, Zhang R D, et al. NiS2 nanoparticles anchored on open carbon nanohelmets as an advanced anode for lithium-ion batteries [J]. Nanoscale Adv., 2020, 2: 512
doi: 10.1039/c9na00661c pmid: 36134007
24 Lin Y M, Qiu Z Z, Li D Z, et al. NiS2@CoS2 nanocrystals encapsulated in N-doped carbon nanocubes for high performance lithium/sodium ion batteries [J]. Energy Stor. Mater., 2018, 11: 67
25 Guo D, Yuan H R, Wang X C, et al. Urchin-like amorphous nitrogen-doped carbon nanotubes encapsulated with transition-metal-alloy@graphene core@shell nanoparticles for microwave energy attenuation [J]. ACS Appl. Mater. Interfaces, 2020, 12: 9628
doi: 10.1021/acsami.9b20412
26 Xu X Q, Ran F T, Fan Z M, et al. Bimetallic metal-organic framework-derived pomegranate-like nanoclusters coupled with CoNi-doped graphene for strong wideband microwave absorption [J]. ACS Appl. Mater. Interfaces, 2020, 12: 17870
doi: 10.1021/acsami.0c01572
27 Shen L F, Yu L, Yu X Y, et al. Self-templated formation of uniform NiCo2O4 hollow spheres with complex interior structures for lithium-ion batteries and supercapacitors [J]. Angew. Chem. Int. Ed., 2015, 54: 1868
doi: 10.1002/anie.201409776
28 Ma F X, Hu H, Wu H B, et al. Formation of uniform Fe3O4 hollow spheres organized by ultrathin nanosheets and their excellent lithium storage properties [J]. Adv. Mater., 2015, 27: 4097
doi: 10.1002/adma.201501130
29 Shen L F, Yu L, Wu H B, et al. Formation of nickel cobalt sulfide ball-in-ball hollow spheres with enhanced electrochemical pseudocapacitive properties [J]. Nat. Commun., 2015, 6: 6694
doi: 10.1038/ncomms7694 pmid: 25798849
30 Yang C C, Jing W T, Li C, et al. Synthesis of open helmet-like carbon skeletons for application in lithium-ion batteries [J]. J. Mater. Chem., 2018, 6A: 3877
31 Zhang M H, Xie H, Fan H S, et al. Two-dimensional carbon-coated CoS2 nanoplatelets issued from a novel Co(OH)(OCH3) precursor as anode materials for lithium ion batteries [J]. Appl. Surf. Sci., 2020, 516: 146133
doi: 10.1016/j.apsusc.2020.146133
32 Xu Q T, Xue H G, Guo S P. FeS2 walnut-like microspheres wrapped with rGO as anode material for high-capacity and long-cycle lithium-ion batteries [J]. Electrochim. Acta, 2018, 292: 1
doi: 10.1016/j.electacta.2018.09.135
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[7] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[8] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.