Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (6): 435-442    DOI: 10.11901/1005.3093.2021.130
  研究论文 本期目录 | 过刊浏览 |
化学腐蚀工艺对激光选区熔化成形TC4钛合金表面粗糙度的影响
蔡雨升1, 韩洪智1,2, 任德春1, 吉海宾1, 雷家峰1()
1.中国科学院金属研究所钛合金研究部 沈阳 110016
2.东北大学材料科学与工程学院 沈阳 110819
Effect of Chemical Etching Process on Surface Roughness of TC4 Ti-alloy Fabricated by Laser Selective Melting
CAI Yusheng1, HAN Hongzhi1,2, REN Dechun1, JI Haibin1, LEI Jiafeng1()
1.Division of Titanium Alloys, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
引用本文:

蔡雨升, 韩洪智, 任德春, 吉海宾, 雷家峰. 化学腐蚀工艺对激光选区熔化成形TC4钛合金表面粗糙度的影响[J]. 材料研究学报, 2022, 36(6): 435-442.
Yusheng CAI, Hongzhi HAN, Dechun REN, Haibin JI, Jiafeng LEI. Effect of Chemical Etching Process on Surface Roughness of TC4 Ti-alloy Fabricated by Laser Selective Melting[J]. Chinese Journal of Materials Research, 2022, 36(6): 435-442.

全文: PDF(15522 KB)   HTML
摘要: 

采用化学腐蚀技术解决激光选区熔化(Selective laser melting, SLM)成形钛合金表面黏附粉末导致表面粗糙的问题,系统研究了腐蚀溶液成分及工艺参数对SLM成形TC4钛合金表面粗糙度的影响。研究结果表明,腐蚀液的成分配比与腐蚀时间是主要的影响因素,随着HF/HNO3体积比的减小,样品表面粗糙度降低效果减弱。当HF/HNO3=1/4时,随着腐蚀时间的增加,样品表面粗糙度显著降低,但当腐蚀时间过长时会造成对基体的损伤。当HF∶HNO3体积比=1∶4,腐蚀时间为9 min时,样品表面粗糙度为2.52 μm,同时腐蚀处理过程对样品的尺寸影响较小(降低0.12 mm),此时达到一个最佳状态。

关键词 金属材料激光选区熔化TC4钛合金化学腐蚀表面粗糙度    
Abstract

Aiming to the problem of surface roughness caused by the adhesion of powder on the surface of TC4Ti-alloy fabricated by Selective Laser Melting (SLM), the influence of chemical etching process, including the formula of etching solution and process parameters, on the surface roughness of the SLMed Ti-alloy was investigated. The results shown that the ratio of HF/HNO3 of the etching solution and the etching time are the main influencing factors. Among them, HF play an important role in reducing the surface roughness of the fabricated Ti-alloy. However, this reducing effect of HF will be weakened as the ratio of HF/HNO3 decreases. For a constant ratio of HF/HNO3 (say HF/HNO3=1/4), the surface roughness decreases obviously with the increasing etching time, but when the etching time is too long, it will cause damage to the substrate. After etching in the solution of HF∶HNO3=1∶4 for 9 minutes, the surface roughness of the fabricated TC4 Ti-alloy is 2.52 μm. At the same time, the etching process has little effect on the size of the sample (with c.a.0.12 mm of thickness reduction), in other words, the etching process reached an optimal state at this time.

Key wordsmetallic materials    selective laser melting    TC4 titanium alloy    chemical corrosion    surface roughness
收稿日期: 2021-02-04     
ZTFLH:  TG146.23  
基金资助:中国航发集团产学研合作项目(HFZL2019CXY019)
作者简介: 蔡雨升,男,1987年生,博士
ElementsAlVFeCNHOTi
Content5.93.97≤0.05≤0.10≤0.05≤0.015≤0.10Bal.
表1  TC4钛合金粉末的化学成分
图1  TC4钛合金粉末形貌
图2  TC4钛合金粉末粒度分布
ParameterValue
Laser power/W200
Scanning speed/mm·s-11200
Layer thickness/mm0.025
Hatch spacing/mm0.1
Volume energy density/J·mm-367
表2  SLM成形TC4钛合金试样轮廓区域成形工艺参数
图3  SLM成形TC4钛合金样品表面形貌
图4  SLM成形TC4钛合金样品表面粗糙度随HF含量的变化规律
图5  SLM成形TC4钛合金腐蚀加工前后表面形貌
图6  SLM成形TC4钛合金腐蚀加工前后表面三维形貌
图7  HF含量对SLM试样厚度的影响
图8  腐蚀加工时间对SLM试样表面粗糙度的影响
图9  SLM成形TC4钛合金经过不同时间腐蚀加工后的表面形貌
图10  SLM成形TC4钛合金经过不同时间腐蚀加工后的表面三维形貌
图11  腐蚀加工时间对SLM试样厚度的影响
1 Boyer R R. An overview on the use of titanium in the aerospace industry [J]. Mater. Sci. Eng., 1996, 213A: 103
2 Wu X Y, Chen Z Y, Cheng C, et al. Effects of heat treatment on microstructure, texture and tensile properties of Ti65 alloy [J]. Chin. J. Mater. Res., 2019, 33: 785
2 吴汐玥, 陈志勇, 程 超 等. 热处理对Ti65钛合金板材的显微组织、织构及拉伸性能的影响 [J]. 材料研究学报, 2019, 33: 785
doi: 10.11901/1005.3093.2019.110
3 Wang X M, Zhang S Q, Yuan Z Y, et al. Effect of heat treatment on mechanical properties of Ti-3Al-8V-6Cr-4Mo-4Zr alloy [J]. Chin. J. Mater. Res., 2017, 31: 409
3 王雪萌, 张思倩, 袁子尧 等. 时效处理对Ti-3Al-8V-6Cr-4Mo-4Zr合金力学性能的影响 [J]. 材料研究学报, 2017, 31: 409
doi: 10.11901/1005.3093.2016.267
4 Ren D C, Su H H, Zhang H B, et al. Effect of cold rotary-swaging deformation on microstructure and tensile properties of TB9 titanium alloy [J]. Acta Metall. Sin., 2019, 55: 480
4 任德春, 苏虎虎, 张慧博 等. 冷旋锻变形对TB9钛合金显微组织和拉伸性能的影响 [J]. 金属学报, 2019, 55: 480
doi: 10.11900/0412.1961.2018.00241
5 Wang G Q, Zhao Z B, Yu B B, et al. Effect of heat treatment process on microstructure and mechanical properties of titanium alloy Ti6246 [J]. Chin. J. Mater. Res., 2017, 31: 352
5 王国强, 赵子博, 于冰冰 等. 热处理工艺对Ti6246钛合金组织与力学性能的影响 [J]. 材料研究学报, 2017, 31: 352
doi: 10.11901/1005.3093.2016.621
6 Nag S, Banerjee R, Srinivasan R, et al. ω-Assisted nucleation and growth of α precipitates in the Ti-5Al-5Mo-5V-3Cr-0.5Fe β titanium alloy [J]. Acta Mater., 2009, 57: 2136
doi: 10.1016/j.actamat.2009.01.007
7 Chen Y Y, Du Z X, Xiao S L, et al. Effect of aging heat treatment on microstructure and tensile properties of a new β high strength titanium alloy [J]. J. Alloys Compd., 2014, 586: 588
doi: 10.1016/j.jallcom.2013.10.096
8 Huang Z H, Qu H L, Deng C, et al. Development and application of aerial titanium and its alloys [J]. Mater. Rev., 2011, 25(1): 102
8 黄张洪, 曲恒磊, 邓 超 等. 航空用钛及钛合金的发展及应用 [J]. 材料导报, 2011, 25(1): 102
9 Qin Q H, Peng H B, Fan Q H, et al. Effect of second phase precipitation on martensitic transformation and hardness in highly Ni-rich NiTi alloys [J]. J. Alloys Compd., 2018, 739: 873
doi: 10.1016/j.jallcom.2017.12.128
10 Zhang H Y, Wang C, Zhang S Q, et al. Evolution of secondary α phase during aging treatment in novel near β Ti-6Mo-5V-3Al-2Fe alloy [J]. Materials, 2018, 11: 2283
doi: 10.3390/ma11112283
11 Liu W. Study on microstructure and tensile properties of TC4-DT titanium alloy forgings [J]. Heavy Cast. Forg., 2018, (3): 38
11 刘 卫. TC4-DT钛合金锻件组织与拉伸性能研究 [J]. 大型铸锻件, 2018, (3): 38
12 Ren Y M, Lin X, Fu X, et al. Microstructure and deformation behavior of Ti-6Al-4V alloy by high-power laser solid forming [J]. Acta Mater., 2017, 132: 82
doi: 10.1016/j.actamat.2017.04.026
13 Ren D C, Li S J, Wang H, et al. Fatigue behavior of Ti-6Al-4V cellular structures fabricated by additive manufacturing technique [J]. J. Mater. Sci. Technol., 2019, 35: 285
14 Schmidt A M, Azambuja D S. Corrosion behavior of Ti and Ti6Al4V in citrate buffers containing fluoride ions [J]. Mater. Res., 2010, 13: 45
15 Liu Y J, Li S J, Wang H L, et al. Microstructure, defects and mechanical behavior of beta-type titanium porous structures manufactured by electron beam melting and selective laser melting [J]. Acta Mater., 2016, 113: 56
doi: 10.1016/j.actamat.2016.04.029
16 Wang P, Sin W J, Nai M L S, et al. Effects of processing parameters on surface roughness of additive manufactured Ti-6Al-4V via electron beam melting [J]. Materials, 2017, 10: 1121
doi: 10.3390/ma10101121
17 Ren D C, Zhang H B, Liu Y J, et al. Microstructure and properties of equiatomic Ti-Ni alloy fabricated by selective laser melting [J]. Mater. Sci. Eng., 2020, 771A: 138586
18 Xu W, Brandt M, Sun S, et al. Additive manufacturing of strong and ductile Ti-6Al-4V by selective laser melting via in situ martensite decomposition [J]. Acta Mater., 2015, 85: 74
doi: 10.1016/j.actamat.2014.11.028
19 Zhang L C, Liu Y J, Li S J, et al. Additive manufacturing of titanium alloys by electron beam melting: a review [J]. Adv. Eng. Mater., 2018, 20: 1700842
doi: 10.1002/adem.201700842
20 The State Bureau of Quality and Technical Supervision. Geometrical Product Specifications (GPS)-Surface texture: profile method-terms, definitions and surface texture parameters [S]. Beijing: China Standardization Press, 2000: 1
20 国家质量技术监督局. 产品几何技术规范 表面结构 轮廓法 表面结构的术语、定义及参数 [S]. 北京: 中国标准出版社, 2000: 1
21 Mumtaz K, Hopkinson N. Top surface and side roughness of Inconel 625 parts processed using selective laser melting [J]. Rapid Prototyping J., 2009, 15: 96
doi: 10.1108/13552540910943397
22 Yang J J, Yu H C, Han J, et al. β-transus temperature of selective laser melted TC4 alloy [J]. Trans. Mater. Heat Treat., 2016, 37(9): 80
22 杨晶晶, 喻寒琛, 韩 婕 等. 激光选区熔化成形TC4合金的β转变温度 [J]. 材料热处理学报, 2016, 37(9): 80
23 Lin C, Liu F, Zhao Q, et al. Influencing factors of rate and surface quality of corrosion processing for TC4 [J]. J. Aeronaut. Mater., 2008, 28(5): 50
23 林 翠, 刘 枫, 赵 晴 等. TC4钛合金腐蚀加工速度和表面质量影响因素研究 [J]. 航空材料学报, 2008, 28(5): 50
24 Lin C, Hu G, Liang J, et al. Dissolution behavior of corrosion processing for TC1 and TC4 titanium alloy [J]. J. Aeronaut. Mater., 2010, 30(6): 43
24 林 翠, 胡 舸, 梁 静 等. TC1和TC4钛合金腐蚀加工溶解行为研究 [J]. 航空材料学报, 2010, 30(6): 43
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.