Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (5): 373-380    DOI: 10.11901/1005.3093.2021.110
  研究论文 本期目录 | 过刊浏览 |
碳纳米管膜表面金属化用于高电流输出柔性锂离子电池
赵超锋, 郑小燕, 李凯瑞, 贾世奎, 张明, 黎业生(), 吴子平
江西理工大学材料冶金化学学部 赣州 341000
Surface Metallization of Carbon Nanotube Film for Flexible Lithium-ion Batteries with High Output Current
ZHAO Chaofeng, ZHENG Xiaoyan, LI Kairui, JIA Shikui, ZHANG Ming, LI Yesheng(), WU Ziping
Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China
引用本文:

赵超锋, 郑小燕, 李凯瑞, 贾世奎, 张明, 黎业生, 吴子平. 碳纳米管膜表面金属化用于高电流输出柔性锂离子电池[J]. 材料研究学报, 2022, 36(5): 373-380.
Chaofeng ZHAO, Xiaoyan ZHENG, Kairui LI, Shikui JIA, Ming ZHANG, Yesheng LI, Ziping WU. Surface Metallization of Carbon Nanotube Film for Flexible Lithium-ion Batteries with High Output Current[J]. Chinese Journal of Materials Research, 2022, 36(5): 373-380.

全文: PDF(13155 KB)   HTML
摘要: 

采用磁控溅射技术对碳纳米管膜进行表面金属化处理,制备了导电性能优异的碳纳米管/金属复合薄膜,其电导率为纯碳纳米管膜的10倍(碳纳米管膜电导率为300 S·cm-1)。以这种复合薄膜为集流体组装的柔性锂离子电池,具有比以纯碳纳米管膜作为集流体更优异的倍率性能(5 C倍率下比容量仍可保持132.6 mAh·g-1)、大倍率循环性能(5 C倍率200圈循环后仍具有74.4%的容量保持率)和更大的输出电流(0.4 A)。

关键词 复合材料柔性锂离子电池高输出电流表面金属化碳纳米管    
Abstract

The CNTs/metal composite film with excellent electrical conductivity was prepared by magnetron sputtering technique. the electrical conductivity of the CNTs/metal composite film can reach 10 times than that of the as-prepared CNT macrofilm (CMF, 300 S·cm-1). In addition, a flexible LIBs with this film as the current collector was prepared, which, in comparison with the flexible LIBs with the simple CNTs film, presents higher rate capability. Moreover, its specific capacity can still be maintained at 132.6 mAh·g-1 at a rate of 5 C, high-rate cycling performance i.e. 74.4% capacity retention rate after 200 cycles at 5 C rate, and larger output current up to 0.4 A.

Key wordscomposite    flexible lithium-ion batteries    high output current    surface metallization    carbon nanotube
收稿日期: 2021-01-22     
ZTFLH:  TQ131  
基金资助:国家自然科学基金(51861009);江西省教育厅科技重点项目(GJJ160596)
作者简介: 赵超锋,男,1995年生,硕士生
图1  制备CMF@Al复合薄膜的示意图、CMF和CMF@Al复合薄膜的宏观形貌、柔性和轻量展示以及结合性测试
图2  CMF@Al复合薄膜和CMF@Cu复合薄膜的表面和断面形貌、基于CMF@Al复合薄膜的正极极片和基于Al箔的正极极片的断面形貌、CMF@Al、CMF@Cu复合薄膜的导电性能与镀层厚度的关系以及不同集流体方块电阻
图3  全电池的化成曲线、倍率性能测试、基于复合薄膜的全电池在不同倍率下的放电曲线、基于金属箔的全电池在不同倍率下放电曲线以及5 C倍率下的长循环测试结果
图4  基于CMF@Al-CMF@Cu的软包电池的开路电压和输出电压、输出电流、基于CMF-CMF的软包电池的开路电压和输出电压、输出电流
图5  机理解释图、循环伏安曲线、交流阻抗图谱以及5 C倍率下200圈循环极化曲线
1 Lee S Y, Choi K H, Choi W S, et al. Progress in flexible energy storage and conversion systems, with a focus on cable-type lithium-ion batteries [J]. Energy Environ. Sci., 2013, 6: 2414
doi: 10.1039/c3ee24260a
2 Gwon H, Hong J, Kim H, et al. Recent progress on flexible lithium rechargeable batteries [J]. Energy Environ. Sci., 2014, 7: 538
doi: 10.1039/C3EE42927J
3 Jia S K, Yang B Z, Zhao C F, et al. Tab engineering-mediated resistance of flexible lithium-ion batteries for high output current [J]. J. Energy Chem., 2021, 58: 264
doi: 10.1016/j.jechem.2020.10.018
4 Zhou G M, Li F, Cheng H M. Progress in flexible lithium batteries and future prospects [J]. Energy Environ. Sci., 2014, 7: 1307
doi: 10.1039/C3EE43182G
5 Nitta N, Wu F X, Lee J T, et al. Li-ion battery materials: present and future [J]. Mater. Today, 2015, 18: 252
doi: 10.1016/j.mattod.2014.10.040
6 Fang Z H, Wang J, Wu H C, et al. Progress and challenges of flexible lithium ion batteries [J]. J. Power Sources, 2020, 454: 227932
doi: 10.1016/j.jpowsour.2020.227932
7 Zhang Y, Jiao Y D, Liao M, et al. Carbon nanomaterials for flexible lithium ion batteries [J]. Carbon, 2017, 124: 79
doi: 10.1016/j.carbon.2017.07.065
8 Wu Z P, Wang Y L, Liu X B, et al. Carbon‐nanomaterial‐based flexible batteries for wearable electronics [J]. Adv. Mater., 2019, 31: 1800716
doi: 10.1002/adma.201800716
9 Huang Q J, Zhu Y. Printing conductive nanomaterials for flexible and stretchable electronics: a review of materials, processes, and applications [J]. Adv. Mater. Technol., 2019, 4: 1800546
doi: 10.1002/admt.201800546
10 Kang C W, Patel M, Rangasamy B, et al. Three-dimensional carbon nanotubes for high capacity lithium-ion batteries [J]. J. Power Sources, 2015, 299: 465
doi: 10.1016/j.jpowsour.2015.08.103
11 Yi Z, Lin N, Zhao Y Y, et al. A flexible micro/nanostructured Si microsphere cross-linked by highly-elastic carbon nanotubes toward enhanced lithium ion battery anodes [J]. Energy Stor. Mater., 2019, 17: 93
12 Song L, Hu C G, Xiao Y, et al. An ultra-long life, high-performance, flexible Li-CO2 battery based on multifunctional carbon electrocatalysts [J]. Nano Energy, 2020, 71: 104595
doi: 10.1016/j.nanoen.2020.104595
13 Yu Y, Luo Y F, Wu H C, et al. Ultrastretchable carbon nanotube composite electrodes for flexible lithium-ion batteries [J]. Nanoscale, 2018, 10: 19972
doi: 10.1039/C8NR05241G
14 Liu T, Zhang M, Wang Y L, et al. Engineering the surface/interface of horizontally oriented carbon nanotube macrofilm for foldable lithium‐ion battery withstanding variable weather [J]. Adv. Energy Mater., 2018, 8: 1802349
doi: 10.1002/aenm.201802349
15 Wang Q H, Zhong S W, Hu J W, et al. Potential threshold of anode materials for foldable lithium-ion batteries featuring carbon nanotube current collectors [J]. J. Power Sources, 2016, 310: 70
doi: 10.1016/j.jpowsour.2016.02.004
16 Zhang M, Wang Z Y, Luo Q, et al. Highly activated carbon nanotube sponges deposited with sulfur for lithium-sulfur batteries [J]. Chin. J. Mater. Res., 2021, 35: 65
16 张 明, 王志勇, 罗 琴 等. 基于高活性碳纳米管海绵体载硫的锂硫电池 [J]. 材料研究学报, 2021, 35: 65
17 Cao J, Chen C, Zhao Q, et al. A flexible nanostructured paper of a reduced graphene oxide-sulfur composite for high-performance lithium-sulfur batteries with unconventional configurations [J]. Adv. Mater., 2016, 28: 9629
doi: 10.1002/adma.201602262
18 Wu J, Chen B, Liu Q Q, et al. Preparation of reduced graphene oxide macro body and its electrochemical energy storage performance [J]. Colloids Surf., 2019, 582A: 123859
19 Yan Y R, Li C L, Liu C, et al. Bundled and dispersed carbon nanotube assemblies on graphite superstructures as free-standing lithium-ion battery anodes [J]. Carbon, 2019, 142: 238
doi: 10.1016/j.carbon.2018.10.044
20 Xiao P T, Bu F X, Yang G H, et al. Integration of graphene, nano sulfur, and conducting polymer into compact, flexible lithium-sulfur battery cathodes with ultrahigh volumetric capacity and superior cycling stability for foldable devices [J]. Adv. Mater., 2017, 29: 1703324
doi: 10.1002/adma.201703324
21 Mo R W, Rooney D, Sun K N, et al. 3D holey-graphene frameworks cross-linked with encapsulated mesoporous amorphous FePO4 nanoparticles for high-power lithium-ion batteries [J]. Chem. Eng. J., 2021, 417: 128475
doi: 10.1016/j.cej.2021.128475
22 Wang K, Luo S, Wu Y, et al. Super-aligned carbon nanotube films as current collectors for lightweight and flexible lithium ion batteries [J]. Adv. Funct. Mater., 2013, 23: 846
doi: 10.1002/adfm.201202412
23 Kim H, Ahn J H. Graphene for flexible and wearable device applications [J]. Carbon, 2017, 120: 244
doi: 10.1016/j.carbon.2017.05.041
24 Ni J F, Li Y. Carbon nanomaterials in different dimensions for electrochemical energy storage [J]. Adv. Energy Mater., 2016, 6: 1600278
doi: 10.1002/aenm.201600278
25 Mu K W, Liu K X, Wang Z Y, et al. An electrolyte-phobic carbon nanotube current collector for high-voltage foldable lithium-ion batteries [J]. J. Mater. Chem., 2020, 8A: 19444
26 Romanov S A, Alekseeva A A, Khabushev E M, et al. Rapid, efficient, and non-destructive purification of single-walled carbon nanotube films from metallic impurities by Joule heating [J]. Carbon, 2020, 168: 193
doi: 10.1016/j.carbon.2020.06.068
27 Wang B W, Jiang S, Zhu Q B, et al. Continuous fabrication of meter‐scale single‐wall carbon nanotube films and their use in flexible and transparent integrated circuits [J]. Adv. Mater., 2018, 30: 1802057
doi: 10.1002/adma.201802057
28 Urper O, Çakmak İ, Karatepe N. Fabrication of carbon nanotube transparent conductive films by vacuum filtration method [J]. Mater. Lett., 2018, 223: 210
doi: 10.1016/j.matlet.2018.03.184
29 Nelyub V A. Technologies of metallization of carbon fabric and the properties of the related carbon fiber reinforced plastics [J]. Russ. Metall., 2018, 2018: 1199
doi: 10.1134/S0036029518130189
30 Che H Q, Gagné M, Rajesh P S M, et al. Metallization of carbon fiber reinforced polymers for lightning strike protection [J]. J. Mater. Eng. Perform., 2018, 27: 5205
doi: 10.1007/s11665-018-3609-y
31 Zhang Z X, Wang H, Zhang Y X, et al. Carbon nanotube/hematite core/shell nanowires on carbon cloth for supercapacitor anode with ultrahigh specific capacitance and superb cycling stability [J]. Chem. Eng. J., 2017, 325: 221
doi: 10.1016/j.cej.2017.05.045
32 Wu Z P, Xu Q F, Wang J N, et al. Preparation of large area double-walled carbon nanotube macro-films with self-cleaning properties [J]. J. Mater. Sci. Technol., 2010, 26: 20
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.