|
|
碳纳米管膜表面金属化用于高电流输出柔性锂离子电池 |
赵超锋, 郑小燕, 李凯瑞, 贾世奎, 张明, 黎业生( ), 吴子平 |
江西理工大学材料冶金化学学部 赣州 341000 |
|
Surface Metallization of Carbon Nanotube Film for Flexible Lithium-ion Batteries with High Output Current |
ZHAO Chaofeng, ZHENG Xiaoyan, LI Kairui, JIA Shikui, ZHANG Ming, LI Yesheng( ), WU Ziping |
Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China |
引用本文:
赵超锋, 郑小燕, 李凯瑞, 贾世奎, 张明, 黎业生, 吴子平. 碳纳米管膜表面金属化用于高电流输出柔性锂离子电池[J]. 材料研究学报, 2022, 36(5): 373-380.
Chaofeng ZHAO,
Xiaoyan ZHENG,
Kairui LI,
Shikui JIA,
Ming ZHANG,
Yesheng LI,
Ziping WU.
Surface Metallization of Carbon Nanotube Film for Flexible Lithium-ion Batteries with High Output Current[J]. Chinese Journal of Materials Research, 2022, 36(5): 373-380.
1 |
Lee S Y, Choi K H, Choi W S, et al. Progress in flexible energy storage and conversion systems, with a focus on cable-type lithium-ion batteries [J]. Energy Environ. Sci., 2013, 6: 2414
doi: 10.1039/c3ee24260a
|
2 |
Gwon H, Hong J, Kim H, et al. Recent progress on flexible lithium rechargeable batteries [J]. Energy Environ. Sci., 2014, 7: 538
doi: 10.1039/C3EE42927J
|
3 |
Jia S K, Yang B Z, Zhao C F, et al. Tab engineering-mediated resistance of flexible lithium-ion batteries for high output current [J]. J. Energy Chem., 2021, 58: 264
doi: 10.1016/j.jechem.2020.10.018
|
4 |
Zhou G M, Li F, Cheng H M. Progress in flexible lithium batteries and future prospects [J]. Energy Environ. Sci., 2014, 7: 1307
doi: 10.1039/C3EE43182G
|
5 |
Nitta N, Wu F X, Lee J T, et al. Li-ion battery materials: present and future [J]. Mater. Today, 2015, 18: 252
doi: 10.1016/j.mattod.2014.10.040
|
6 |
Fang Z H, Wang J, Wu H C, et al. Progress and challenges of flexible lithium ion batteries [J]. J. Power Sources, 2020, 454: 227932
doi: 10.1016/j.jpowsour.2020.227932
|
7 |
Zhang Y, Jiao Y D, Liao M, et al. Carbon nanomaterials for flexible lithium ion batteries [J]. Carbon, 2017, 124: 79
doi: 10.1016/j.carbon.2017.07.065
|
8 |
Wu Z P, Wang Y L, Liu X B, et al. Carbon‐nanomaterial‐based flexible batteries for wearable electronics [J]. Adv. Mater., 2019, 31: 1800716
doi: 10.1002/adma.201800716
|
9 |
Huang Q J, Zhu Y. Printing conductive nanomaterials for flexible and stretchable electronics: a review of materials, processes, and applications [J]. Adv. Mater. Technol., 2019, 4: 1800546
doi: 10.1002/admt.201800546
|
10 |
Kang C W, Patel M, Rangasamy B, et al. Three-dimensional carbon nanotubes for high capacity lithium-ion batteries [J]. J. Power Sources, 2015, 299: 465
doi: 10.1016/j.jpowsour.2015.08.103
|
11 |
Yi Z, Lin N, Zhao Y Y, et al. A flexible micro/nanostructured Si microsphere cross-linked by highly-elastic carbon nanotubes toward enhanced lithium ion battery anodes [J]. Energy Stor. Mater., 2019, 17: 93
|
12 |
Song L, Hu C G, Xiao Y, et al. An ultra-long life, high-performance, flexible Li-CO2 battery based on multifunctional carbon electrocatalysts [J]. Nano Energy, 2020, 71: 104595
doi: 10.1016/j.nanoen.2020.104595
|
13 |
Yu Y, Luo Y F, Wu H C, et al. Ultrastretchable carbon nanotube composite electrodes for flexible lithium-ion batteries [J]. Nanoscale, 2018, 10: 19972
doi: 10.1039/C8NR05241G
|
14 |
Liu T, Zhang M, Wang Y L, et al. Engineering the surface/interface of horizontally oriented carbon nanotube macrofilm for foldable lithium‐ion battery withstanding variable weather [J]. Adv. Energy Mater., 2018, 8: 1802349
doi: 10.1002/aenm.201802349
|
15 |
Wang Q H, Zhong S W, Hu J W, et al. Potential threshold of anode materials for foldable lithium-ion batteries featuring carbon nanotube current collectors [J]. J. Power Sources, 2016, 310: 70
doi: 10.1016/j.jpowsour.2016.02.004
|
16 |
Zhang M, Wang Z Y, Luo Q, et al. Highly activated carbon nanotube sponges deposited with sulfur for lithium-sulfur batteries [J]. Chin. J. Mater. Res., 2021, 35: 65
|
16 |
张 明, 王志勇, 罗 琴 等. 基于高活性碳纳米管海绵体载硫的锂硫电池 [J]. 材料研究学报, 2021, 35: 65
|
17 |
Cao J, Chen C, Zhao Q, et al. A flexible nanostructured paper of a reduced graphene oxide-sulfur composite for high-performance lithium-sulfur batteries with unconventional configurations [J]. Adv. Mater., 2016, 28: 9629
doi: 10.1002/adma.201602262
|
18 |
Wu J, Chen B, Liu Q Q, et al. Preparation of reduced graphene oxide macro body and its electrochemical energy storage performance [J]. Colloids Surf., 2019, 582A: 123859
|
19 |
Yan Y R, Li C L, Liu C, et al. Bundled and dispersed carbon nanotube assemblies on graphite superstructures as free-standing lithium-ion battery anodes [J]. Carbon, 2019, 142: 238
doi: 10.1016/j.carbon.2018.10.044
|
20 |
Xiao P T, Bu F X, Yang G H, et al. Integration of graphene, nano sulfur, and conducting polymer into compact, flexible lithium-sulfur battery cathodes with ultrahigh volumetric capacity and superior cycling stability for foldable devices [J]. Adv. Mater., 2017, 29: 1703324
doi: 10.1002/adma.201703324
|
21 |
Mo R W, Rooney D, Sun K N, et al. 3D holey-graphene frameworks cross-linked with encapsulated mesoporous amorphous FePO4 nanoparticles for high-power lithium-ion batteries [J]. Chem. Eng. J., 2021, 417: 128475
doi: 10.1016/j.cej.2021.128475
|
22 |
Wang K, Luo S, Wu Y, et al. Super-aligned carbon nanotube films as current collectors for lightweight and flexible lithium ion batteries [J]. Adv. Funct. Mater., 2013, 23: 846
doi: 10.1002/adfm.201202412
|
23 |
Kim H, Ahn J H. Graphene for flexible and wearable device applications [J]. Carbon, 2017, 120: 244
doi: 10.1016/j.carbon.2017.05.041
|
24 |
Ni J F, Li Y. Carbon nanomaterials in different dimensions for electrochemical energy storage [J]. Adv. Energy Mater., 2016, 6: 1600278
doi: 10.1002/aenm.201600278
|
25 |
Mu K W, Liu K X, Wang Z Y, et al. An electrolyte-phobic carbon nanotube current collector for high-voltage foldable lithium-ion batteries [J]. J. Mater. Chem., 2020, 8A: 19444
|
26 |
Romanov S A, Alekseeva A A, Khabushev E M, et al. Rapid, efficient, and non-destructive purification of single-walled carbon nanotube films from metallic impurities by Joule heating [J]. Carbon, 2020, 168: 193
doi: 10.1016/j.carbon.2020.06.068
|
27 |
Wang B W, Jiang S, Zhu Q B, et al. Continuous fabrication of meter‐scale single‐wall carbon nanotube films and their use in flexible and transparent integrated circuits [J]. Adv. Mater., 2018, 30: 1802057
doi: 10.1002/adma.201802057
|
28 |
Urper O, Çakmak İ, Karatepe N. Fabrication of carbon nanotube transparent conductive films by vacuum filtration method [J]. Mater. Lett., 2018, 223: 210
doi: 10.1016/j.matlet.2018.03.184
|
29 |
Nelyub V A. Technologies of metallization of carbon fabric and the properties of the related carbon fiber reinforced plastics [J]. Russ. Metall., 2018, 2018: 1199
doi: 10.1134/S0036029518130189
|
30 |
Che H Q, Gagné M, Rajesh P S M, et al. Metallization of carbon fiber reinforced polymers for lightning strike protection [J]. J. Mater. Eng. Perform., 2018, 27: 5205
doi: 10.1007/s11665-018-3609-y
|
31 |
Zhang Z X, Wang H, Zhang Y X, et al. Carbon nanotube/hematite core/shell nanowires on carbon cloth for supercapacitor anode with ultrahigh specific capacitance and superb cycling stability [J]. Chem. Eng. J., 2017, 325: 221
doi: 10.1016/j.cej.2017.05.045
|
32 |
Wu Z P, Xu Q F, Wang J N, et al. Preparation of large area double-walled carbon nanotube macro-films with self-cleaning properties [J]. J. Mater. Sci. Technol., 2010, 26: 20
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|