Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (4): 307-313    DOI: 10.11901/1005.3093.2021.144
  研究论文 本期目录 | 过刊浏览 |
原位自生纳米Al2O3/Al-Zn-Cu复合材料的力学性能
刘思妤, 李正元(), 陈立佳, 李锋
沈阳工业大学材料科学与工程学院 沈阳 110870
Mechanical Properties of In-situ Synthesised Nano Al2O3/Al-Zn-Cu Composites
LIU Siyu, LI Zhengyuan(), CHEN Lijia, LI Feng
School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110136, China
引用本文:

刘思妤, 李正元, 陈立佳, 李锋. 原位自生纳米Al2O3/Al-Zn-Cu复合材料的力学性能[J]. 材料研究学报, 2022, 36(4): 307-313.
Siyu LIU, Zhengyuan LI, Lijia CHEN, Feng LI. Mechanical Properties of In-situ Synthesised Nano Al2O3/Al-Zn-Cu Composites[J]. Chinese Journal of Materials Research, 2022, 36(4): 307-313.

全文: PDF(19768 KB)   HTML
摘要: 

将纳米ZnO粉末和Al粉球磨后冷压成Al-ZnO预制块,然后将其加到Al-Zn-Cu熔体中进行Al-ZnO原位反应,制备出纳米Al2O3颗粒增强Al-Zn-Cu基复合材料。能谱面扫描分析和透射电镜观察结果表明,复合材料由纳米Al2O3颗粒和Al2Cu析出相两种颗粒/析出相组成。纳米Al2O3颗粒通过异质形核和晶界钉扎,细化了Al-Zn-Cu合金晶粒组织和Al2Cu析出相。原位纳米Al2O3颗粒的生成提高了基体合金的拉伸性能,轧制+热处理使Al2O3/Al-Zn-Cu复合材料的拉伸强度比相同处理的基体合金提高约100%,总伸长率提高约98%。

关键词 复合材料纳米Al2O3颗粒原位自生Al-ZnO体系    
Abstract

Nano Al2O3 particles reinforced Al-Zn-Cu alloy composite of Al2O3/Al-Zn-Cu was prepared by a two-step process, namely nano-ZnO powder and Al powder were first ball-milled and then cold-pressed to prepare Al-ZnO preforms, and next which was added to the stirring Al-Zn-Cu melt, thereby nano Al2O3 particles reinforced Al-Zn-Cu based composites were prepared through Al-ZnO in-situ reaction. The results of energy spectrum scan and transmission electron microscope show that there are mainly two kinds of particles/precipitated phases in the composite material: nano Al2O3 particles and Al2Cu precipitated phases. The grain structure and precipitates of Al-Zn-Cu alloy were refined by nano-sized Al2O3 particles through the heterogeneous nucleation and grain boundary pinning. The formation of in-situ nano Al2O3 particles could enhance the tensile properties of the base alloy. After proper rolling + heat treatment the Al2O3/Al-Zn-Cu composites present tensile strength and total elongation percentage ca 100% and 98% higher than that of the Al-Zn-Cu matrix alloy equally treated, respectively.

Key wordscomposite    nano Al2O3 particles    in-situ    Al-ZnO system
收稿日期: 2021-02-21     
ZTFLH:  TG146.2  
基金资助:辽宁省教育厅科学技术研究服务地方项目(201724141)
作者简介: 刘思妤,女,1993年生,硕士生
Composition

Tensile Strength

/MPa

Utimate tensile strength /MPaHardness (HB)Ref.
Al241.5-70[11]
Al+5% Al2O3262.2-76
Al+10% Al2O3276.0-80
Al(A359)103.7--[12]
Al(A359)+4% Al2O3120.6--
Al(7075)-210-[1]
Al(7075)+4% Al2O3-226-
表1  部分常见的Al2O3颗粒增强Al基复合材料的力学性能
图1  球磨后Al-ZnO混合粉末的面扫能谱
ElementsZnCuZrOAl
Content6.62.10.141.4Bal.
表2  Al2O3/Al-Zn-Cu复合材料铸锭的成分(质量分数,%)
图2  Al-ZnO粉末和复合材料的XRD谱
图3  轧制热处理后Al-Zn-Cu基体合金和Al2O3/Al-Zn-Cu复合材料的EBSD谱
图4  轧制热处理后Al-Zn-Cu基体合金和Al2O3/Al-Zn-Cu复合材料的背散射照片
图5  轧制热处理后Al2O3/Al-Zn-Cu复合材料的EDS面扫
图6  轧制热处理后Al2O3/Al-Zn-Cu复合材料的TEM照片和选区电子衍射
图7  Al-Zn-Cu基体合金和纳米Al2O3/Al-Zn-Cu复合材料的应力应变曲线
SamplesTensile strength, σt/MPaYield strength, σ0.2/MPaTotal elongation, At/%
As-cast Al-Zn-Cu159.4±10.297.7±7.115.7±3.1
Rolling + heat treatment Al-Zn-Cu197.6±11.7166.5±7.916.9±5.1
As-cast Al2O3/Al-Zn-Cu235.5±15.5187.2±8.915.8±5.5
Rolling + heat treatment Al2O3/Al-Zn-Cu398.2±12.8249.1±5.533.5±9.5
表3  Al-Zn-Cu基体合金和Al2O3/Al-Zn-Cu复合材料的拉伸强度、屈服强度和总伸长率
图8  Al-Zn-Cu基体和纳米Al2O3/Al-Zn-Cu复合材料的断口形貌
1 Imran M, Khan A R A. Characterization of Al-7075 metal matrix composites: a review [J]. J. Mater. Res. Technol., 2019, 8: 3347
doi: 10.1016/j.jmrt.2017.10.012
2 Gao Y H, Liu G, Sun J. Recent progress in high-temperature resistant aluminum-based alloys: Microstructural design and precipitation strategy [J]. Acta Metall. Sin., 2021, 57: 129
2 高一涵, 刘 刚, 孙 军. 耐热铝基合金研究进展: 微观组织设计与析出策略 [J]. 金属学报, 2021, 57: 129
3 Wu M W, Hua L, Zhou J X, et al. Advances in thermal conductive aluminum alloys and aluminum matrix composites [J]. Mater. Rev., 2018, 32: 1486
3 吴孟武, 华 林, 周建新 等. 导热铝合金及铝基复合材料的研究进展 [J]. 材料导报, 2018, 32: 1486
4 Yashpal, Sumankant, Jawalkar C S, et al. Fabrication of aluminium metal matrix composites with particulate reinforcement: A review [J]. Mater. Today: Proc., 2017, 4: 2927
5 Gobalakrishnan B, Rajaravi C, Udhayakumar G, et al. Effect of ceramic particulate addition on aluminium based ex-situ and in-situ formed metal matrix composites [J]. Met. Mater. Int., 2020, 27: 3695
doi: 10.1007/s12540-020-00868-6
6 Wu X Y, Zhang L Z, Zhao Z Y, et al. Research status of particle reinforced 7××× series aluminum matrix composites [J]. Nonferrous Met. Eng., 2020, 10(11): 11
6 武侠宇, 张立正, 赵占勇 等. 颗粒增强7×××系铝基复合材料研究现状 [J]. 有色金属工程, 2020, 10(11): 11
7 Hassanzadeh-Aghdam M K, Haghgoo M, Ansari R. Micromechanical study of elastic-plastic and thermoelastic behaviors of SiC nanoparticle-reinforced aluminum nanocomposites [J]. Mech. Mater., 2018, 121: 1
doi: 10.1016/j.mechmat.2018.03.001
8 Syresh S, Moorthi N S V, Vettivel S C, et al. Mechanical behavior and wear prediction of stir cast Al–TiB2 composites using response surface methodology [J]. Mater. Des., 2014, 59: 383
doi: 10.1016/j.matdes.2014.02.053
9 Rui Z, Zhao Y T, Zhang S L, et al. In situ fabrication and microstucture of ZrB2 particles reinforced aluminum matrix composites [J]. Adv. Mater. Res., 2012, 476-478: 122
10 Pan H, Fan G L, Tan Z Q, et al. Preparation methods and developing trends of nano-Al2O3-reinforced aluminum matrix composites [J]. Mater. Rev., 2015, 29(1): 36
10 潘 浩, 范根莲, 谭占秋 等. 纳米Al2O3增强铝基复合材料的制备技术和发展方向 [J]. 材料导报, 2015, 29(1): 36
11 Kumar A, Lal S, Kumar S. Fabrication and characterization of A359/Al2O3 metal matrix composite using electromagnetic stir casting method [J]. J. Mater. Res. Technol., 2013, 2: 250
doi: 10.1016/j.jmrt.2013.03.015
12 Sujan D, Oo Z, Rahman M E, et al. Physio-mechanical properties of aluminium metal matrix composites reinforced with Al2O3 and SiC [J]. Int. J. Mater. Metall. Eng., 2012, 6: 678
13 Xu T, Li G R, Xie M L, et al. Microstructure and mechanical properties of in-situ nano γ-Al2O3p/A356 aluminum matrix composite [J]. J. Alloys Compd., 2019, 787: 72
doi: 10.1016/j.jallcom.2019.02.045
14 Mou S Y, Chen G, Zhang Z Y, et al. Reaction mechanism of nano-sized Al2O3p/Al composites prepared in Al-SiO2 system [J]. Spec. Cast. Nonferrous Alloys, 2020, 40: 883
14 牟姝妤, 陈 刚, 张振亚 等. Al-SiO2体系反应生成纳米Al2O3p/Al复合材料的机理 [J]. 特种铸造及有色合金, 2020, 40: 883
15 Zhang Z L, Chen G, Zhao Y T, et al. Effects of squeezing casting on microstructure and properties of in-situ α-Al2O3p/ZL109 composite [J]. Spec. Cast. Nonferrous Alloys, 2017, 37: 83
15 张再磊, 陈 刚, 赵玉涛 等. 挤压铸造对α-Al2O3p/ZL109复合材料组织与性能的影响 [J]. 特种铸造及有色合金, 2017, 37: 83
16 Ma P, Jia Y D, Gokuldoss P K, et al. Effect of Al2O3 nanoparticles as reinforcement on the tensile behavior of Al-12Si composites [J]. Metals, 2017, 7: 359
doi: 10.3390/met7090359
17 Cheng L, Zhu D G, Gao Y, et al. Microstructure and properties of in situ fabricated Al-5wt. %Si-Al2O3 composites [J]. Adv. Mater. Res., 2012, 567: 15
18 Zhao G, Shi Z M, Zhang R Y. Effect of CuO particle size on the microstructure evolution of Al2O3P/Al composites prepared via displacement reactions in the Al/CuO system [J]. Acta Metall. Sin. (Engl. Lett.), 2015, 28: 699
19 Li S F, Liu L, Zhang Xet al. A method of preparing in-situ nano-alumina content-controllable aluminum-based composite material [P]. China Pat, 201910753514.7, 2019
19 李树丰, 刘 磊, 张 鑫 等. 一种原位纳米氧化铝含量可控的铝基复合材料的制备方法 [P]. 中国专利, 201910753514.7, 2019)
20 Yu P, Deng C J, Ma N G, et al. A new method of producing uniformly distributed alumina particles in Al-based metal matrix composite [J]. Mater. Lett., 2004, 58: 679
doi: 10.1016/j.matlet.2003.06.001
21 Schultz B F, Ferguson J B, Rohatgi P K. Microstructure and hardness of Al2O3 nanoparticle reinforced Al-Mg composites fabricated by reactive wetting and stir mixing [J]. Mater. Sci. Eng., 2011, 530A: 87
22 Ferguson J B, Lopez H F, Rohatgi P K, et al. Impact of volume fraction and size of reinforcement particles on the grain size in metal-matrix micro and nanocomposites [J]. Metall. Mater. Trans., 2014, 45A: 4055
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.