Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (10): 769-776    DOI: 10.11901/1005.3093.2021.579
  研究论文 本期目录 | 过刊浏览 |
基于微观定向骨架结构Cu-W复合电触头材料的静熔焊性能
韩颖1(), 秦杰1, 曹云东1, 李述军2()
1.沈阳工业大学电气工程学院 沈阳 110870
2.中国科学院金属研究所 沈阳 110016
Investigation on Static Fusion Welding Performance of Cu-W Composite with Microscopically Oriented Skeleton Structures
HAN Ying1(), QIN Jie1, CAO Yundong1, LI Shujun2()
1.School of Electrical Engineering, Shenyang University of Technology, Shenyang 110870, China
2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

韩颖, 秦杰, 曹云东, 李述军. 基于微观定向骨架结构Cu-W复合电触头材料的静熔焊性能[J]. 材料研究学报, 2022, 36(10): 769-776.
Ying HAN, Jie QIN, Yundong CAO, Shujun LI. Investigation on Static Fusion Welding Performance of Cu-W Composite with Microscopically Oriented Skeleton Structures[J]. Chinese Journal of Materials Research, 2022, 36(10): 769-776.

全文: PDF(1884 KB)   HTML
摘要: 

设计了四边形、六边形和菱形十二面体微观定向骨架结构的Cu-W复合材料,研究其静熔焊性能并与无序骨架结构的Cu-W复合材料对比。根据流体力学理论,用有限元法分析不同时刻几种微观结构复合材料的温度和传导热通量并计算了导热系数。结果表明,具有微观定向骨架结构的Cu-W复合材料其接触电阻更低和更稳定,其中菱形十二面体骨架结构复合材料的接触电阻最小且更易形成导热链,更大程度地降低了区域热阻。根据马兰戈尼效应比较了不同微观结构复合材料的熔池形态,发现Cu、W两相材料规则的排列分布使其静熔焊侵蚀的范围明显减小,菱形十二面体骨架复合材料的侵蚀程度最低。

关键词 复合材料微观定向结构静熔焊接触电阻熔化相变    
Abstract

The Cu-W composites with three different microstructures, namely quadrilateral, hexagonal and rhomboidal microdirectional skeleton structure were designed and prepared, and their static welding properties were investigated, by taking the Cu-W composites with disordered skeleton structure as comparison. According to the principle of fluid mechanics, the variation of temperature and conduction heat flux for composites of various macrostructures with time were analyzed by means of finite element method, and their thermal conductivity was calculated. The results show that the contact resistance of Cu-W composites with microscopically oriented skeleton structure is lower and more stable, among others, the composite with rhombic dodecahedral skeleton has the lowest contact resistance, and where may exist a heat conducting chain, and even an uniformly distributed heat conducting network, which reduces the regional thermal resistance to a greater extent. According to the Marangoni effect, the molten pool morphology of the composites with different microstructures is compared, and it is found that the regular distribution of Cu and W two-phase materials can facilitate the reduction of the size of aggressed area induced by the static fusion welding, accordingly the rhomboidal dodecahedron matrix composites have the lowest aggressed area.

Key wordscomposite    micro-oriented structure    static welding    contact resistance    melting phase transition
收稿日期: 2021-10-09     
ZTFLH:  TG146.1  
基金资助:国家自然科学基金(51977132);辽宁省自然科学基金(2019-MS-249 & LACT-007);重点实验室装备预先研究基金(6142A03203002)
作者简介: 韩颖,女,1979年生,副教授
图1  蜻蜓翅脉的微观形貌
图2  具有四边形 、六边形、菱形十二面体骨架结构及无序骨架结构的 Cu-W复合材料模型
图3  菱形十二面体微观结构单元W骨架
图4  具有不同微观W骨架结构Cu-W复合材料接触斑点中心的平均温度
图5  具有四边形、六边形、菱形十二面体及无序W骨架结构Cu-W复合材料的表面温度分布
图6  具有四边形、六边形、菱形十二面体及无序分布W骨架结构Cu-W复合材料加热阶段的传导热通量
图7  四边形、六边形、菱形十二面体 W骨架的微观导热单元示意图
图8  具有四边形、六边形、菱形十二面体及无序分布W骨架结构Cu-W复合材料加热阶段不同时刻液态金属的扩散范围
图9  具有四边形、六边形、菱形十二面体及无序分布W骨架结构Cu-W复合材料25 μs时熔池的形态
图10  具有不同微观定向W骨架Cu-W复合材料熔池的液相体积
1 Li Z B, Zhang G S, Qin Q S. Static welding resistance of electric contact materials [J]. Proc. CSEE, 1994, 14(1): 34
1 李震彪, 张冠生, 秦庆生. 电触头材料抗静熔焊能力的研究 [J]. 中国电机工程学报, 1994, 14(1): 34
2 Doublet L, Jemaa N B, Hauner F, et al. Electrical arc phenomena and its interaction on contact material at 42 volts DC for automotive applications [A]. Proceedings of the 50th IEEE Holm Conference on Electrical Contacts and the 22nd International Conference on Electrical Contacts Electrical Contacts, 2004 [C]. Seattle, WA, USA: IEEE, 2004: 8
3 Liu G J, Lu J G, Wang H T, et al. Failure analysis of contactor relay [J]. Trans. China Electrotech. Soc., 2011, 26(1): 81
3 刘帼巾, 陆俭国, 王海涛 等. 接触器式继电器的失效分析 [J]. 电工技术学报, 2011, 26(1): 81
4 Qiao X L. Study on dynamic welding of high voltage DC power relay contact [D]. Harbin: Harbin Institute of Technology, 2016
4 乔鑫磊. 高压直流大功率继电器触头动熔焊现象研究 [D]. 哈尔滨: 哈尔滨工业大学, 2016
5 Sun X X. Study of preparation and thermal property of three dimensional graphene based nanocomposites [D]. Harbin: Harbin Institute of Technology, 2017
5 孙贤贤. 三维石墨烯基纳米复合材料的制备及导热性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2017
6 Ye C L. Preparation of Zn2SnO4 nanopowder and its application in silver-based electrical contact materials [D]. Hangzhou: Zhejiang University, 2019
6 叶晨琳. 纳米锡酸锌制备及其在银基电接触材料中的应用研究 [D]. 杭州: 浙江大学, 2019
7 Ma D Q. Study on processing and electrical contact properties of high dense ultrafined W-Cu composites [D]. Zhengzhou: Zhengzhou University, 2016
7 马窦琴. 细晶高致密钨铜复合材料制备及电接触性能研究 [D]. 郑州: 郑州大学, 2016
8 Zhu Y C, Wang J Q, An L Q, et al. Preparation and electrical performance of new Ag/SnO2/CeO2 electrical contact materials [J]. Rare Metal Mat. Eng., 2015, 44(8): 2011
8 朱艳彩, 王景芹, 安立强 等. 新型Ag/SnO2/CeO2电器触头材料的制备及其电气性能的研究 [J]. 稀有金属材料与工程, 2015, 44(8): 2011
9 Li W H. Preparation and application of graphite film/copper composite materials with high thermal conductivity [D]. Xiangtan: Xiangtan University, 2018
9 李文虎. 高导热石墨膜/铜复合材料的制备及应用 [D]. 湘潭: 湘潭大学, 2018
10 Chen J J, Liu B F, Gao X H. Thermal properties of graphene-based polymer composite materials: A molecular dynamics study [J]. Results Phys., 2020, 16: 102974
doi: 10.1016/j.rinp.2020.102974
11 Zhang X M, Wu H, Guo S Y. Preparation of a thermally conductive network with a highly oriented and ordered distribution structure [A]. China Composites Industry Association, Summary of the 3rd China International Composite Materials Technology Conference-Sub-venue. Hangzhou: Chinese Society for Composite Materials, 2017: 106
11 张晓朦, 吴 宏, 郭少云. 制备具有高度取向和有序分布结构的导热网络 [A]. 第三届中国国际复合材料科技大会摘要集-分会场1-5 [C]. 杭州: 中国复合材料学会, 2017: 106
12 Wang Y S. Study on the preparation and electrical properties of ordered submicron structured conductive polymer materials [D]. Yangzhou: Yangzhou University, 2011
12 王玉霜. 有序亚微米结构导电高分子材料的制备及电性能研究 [D]. 扬州: 扬州大学, 2011
13 Song P. The study of three dimension ordered nano self-assembly materials and properties based on ice template method [D]. Hefei: Hefei University of Technology, 2018
13 宋 品. 基于冰模板法构筑三维有序纳米自组装材料与性能研究 [D]. 合肥: 合肥工业大学, 2018
14 Li S W. Study on ordered polymer-based composite films [D]. Tianjin: Tianjin University, 2017
14 李双雯. 定向有序结构的聚合物基复合膜的研究 [D]. 天津: 天津大学, 2017
15 Ying J F, Tan X, Lv L, et al. Tailoring highly ordered graphene framework in epoxy for high-performance polymer-based heat dissipation plates [J]. ACS Nano, 2021, 15(8): 12922
doi: 10.1021/acsnano.1c01332
16 Lu S X. Study on preparation and performance of porous ceramics with directional pore structure [D]. Guangzhou: South China University of Technology, 2020
16 卢舒欣. 有序孔结构多孔陶瓷的制备及其性能研究 [D]. 广州: 华南理工大学, 2020
17 Sun Y N, Wu Y J, Cai H, et al. A modified 360° netting vein bionic structure for enhancing thermal properties of polymer/nanofiber/nanoparticle composite [J]. Composites, 2021, 143A: 106276
18 Lei Y P. Natural loofah based bio-inspired structural material and its thermal and mechanical properties [D]. Zhengzhou: Henan University of Technology, 2017
18 雷永鹏. 基于丝瓜微结构的超轻仿生结构设计与热、力学分析 [D]. 郑州: 河南工业大学, 2017
19 Sun F Q. Preparation and properties of bionic micro-structured graphene high elastic strain-insensitive conductive fiber [D]. Qingdao: Qingdao University, 2020
19 孙奉强. 仿生微结构石墨烯高弹性应变不灵敏导电纤维制备及其性能研究 [D]. 青岛: 青岛大学, 2020
20 Han Y, Wang H S, Cao Y D, et al. Mechanical and electrical properties of Cu-W composites with micro-oriented structures [J]. Acta Metall. Sin., 2021, 57(8): 1009
doi: 10.11900/0412.1961.2020.00387
20 韩 颖, 王宏双, 曹云东 等. 微观定向结构Cu-W复合材料的力学与电学性能 [J]. 金属学报, 2021, 57(8): 1009
21 Chen Y P, Cheng P. Heat transfer and pressure drop in fractal tree-like microchannel nets [J]. Int. J. Heat Mass Transfer, 2002, 45(13): 2643
doi: 10.1016/S0017-9310(02)00013-3
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.