Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (6): 411-418    DOI: 10.11901/1005.3093.2020.348
  综述 本期目录 | 过刊浏览 |
用扩散法制备MgB2块材的研究进展
赵万里1,2, 索红莉1(), 刘敏1,2, 马麟1,2, 戴银明1,2, 张子立2()
1.北京工业大学材料与制造学部 北京 100124
2.中国科学院电工研究所 北京 100190
Research Progress in Preparation of MgB2 Bulk by Diffusion Method
ZHAO Wanli1,2, SUO Hongli1(), LIU Min1,2, MA Lin1,2, DAI Yinming1,2, ZHANG Zili2()
1.The Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
2.Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
引用本文:

赵万里, 索红莉, 刘敏, 马麟, 戴银明, 张子立. 用扩散法制备MgB2块材的研究进展[J]. 材料研究学报, 2021, 35(6): 411-418.
Wanli ZHAO, Hongli SUO, Min LIU, Lin MA, Yinming DAI, Zili ZHANG. Research Progress in Preparation of MgB2 Bulk by Diffusion Method[J]. Chinese Journal of Materials Research, 2021, 35(6): 411-418.

全文: PDF(1761 KB)   HTML
摘要: 

MgB2超导体具有优良的超导电性能,受到了极大的关注。用不同方法制备的MgB2超导体,其超导电性能也不尽相同。常压扩散法使用的设备简单且操作方便,制备出的MgB2超导电性能也较为优越。本文系统地介绍了属于扩散法的渗透生长法、渗透胶囊法、液相Mg扩散法和气相扩散法并对其优缺点进行了比较,重点介绍了液相Mg扩散法在超导电缆、电磁屏蔽和磁悬浮等方面的应用。根据对各种合成方法的比较及其相关的应用,展望了扩散合成法的发展趋势。

关键词 评述特种功能无机非金属材料MgB2超导体扩散合成法强电应用    
Abstract

Since the discovery of MgB2 superconductor in 2001, it has been highly concerned by scientists and engineers due to its peculiar characteristics. As a result, a number of different methods and approaches had been developed for the synthesis of MgB2 superconductor, whilst its performance in superconductivity varies significantly depending on the synthesis method. Among many synthesis methods, the diffusion method is the mostly effective way to synthesize MgB2 of superior superconductivity, while such process requires simple equipment and is easy to operate. This article systematically introduced various diffusion methods, including infiltration growth method, infiltration capsule method, liquid phase Mg diffusion method and vapor phase diffusion method, and the advantages and disadvantages of these methods were also compared. At the same time, the main application fields of liquid phase Mg diffusion method, such as superconducting cable, electromagnetic shielding and magnetic levitation, were introduced. Based on the comparison of various synthetic methods and their related applications, the development trend of diffusion synthesis was ulteriorly prospected.

Key wordsreview    special functional inorganic non-metallic materials    MgB2 superconductor    diffusion synthesis    strong current application
收稿日期: 2020-08-20     
ZTFLH:  TM26  
基金资助:国家重点研发计划(2018YFF0109401);中国科学院国际合作项目(182111KYSB20170067);国家自然基金(11745005);国家重大科研仪器研制项目(51827810);北京市教委科技计划一般项目(KM201810005010);北京市和北京工业大学211计划(PXM2019_014204_500031)
作者简介: 赵万里,男,1996年生,硕士生
图1  Mg-RLI法中Mg和B的相对位置[13]
ReferenceShapeExperimental conditionSizeCritical current densityOther property
[11]Cylindrical1223 K, 3 hD = 17 mm4.2 K, 10 T, Jc>10 A/mm2;

Tc = 39~40 K;

ρ = 2.40 g/cm3

[12]Rod1173 K, 3 hL1 = 110 mm4.2 K, 10 T, Jc ≈ 0.9 A/mm2;ρ = 2.31 g/cm3
L2 = 75 mm4.2 K, 7 T, Jc ≈ 1.1 A/mm2;ρ = 2.09 g/cm3
[13]Rod1173 K, 3 hD = 10 mm,L = 100 mm4.2 K, 5 T, Jc>10 A/mm2;ρ = 2.30 g/cm3
[20]Rod1173 K, 3 hD = 10 mm,L = 100 mm

20 K, 3 T,

Jc1 = 10~20 A/mm2

Jc2 ≈ 50 A/mm2

ρL = 2.35 g/cm3
Tubular1173 K, 2 hL = 260 mm, Dint= 7 mm, Dout = 9 mm
Cylinder1173 K, 2.5 hL = 58.74 mm,Dint = 25.57 mm,Dout = 48.25 mm
Large cylinder1123 K, 3 hL = 75 mm,Dout = 100 mm,Dint = 10 mm
Ring1123 K, 1 hDint = 10 mm,Dout = 15 mm,L = 9 mm
[21]Superconductor insert1173 K, 3 hDmax = 54 mm,Dmin = 20 mm

4.2 K, 4 T,

Jc ≈ 64.52 A/mm2

The distribution of magnetic field is more uniform after magnetization
表1  部分用Mg-RLI法合成的MgB2超导体
图2  用Infiltration and Growth法合成MgB2的过程[24]
图3  渗透胶囊法的特质容器[27]
图4  改进后的容器和制备的MgB2块体[29]
图5  气固合成法的特制炉管[31]
图6  三种超导接头
图7  超导轴承的设计模型[43-44]
1 Fuchs G, Haessler W, Nenkov K, et al. High trapped fields in bulk MgB2 prepared by hot-pressing of ball-milled precursor powder [J]. Superconductor Science and Technology, 2013, 26(12): 122002
2 Yamamoto A, Shimoyama J I, Ueda S, et al. Synthesis of high(Jc)MgB2 bulks with high reproducibility by a modified powder-in-tube method[J]. Superconductor Science and Technology, 2004, 17(7): 921
3 Nagamatsu J, Nakagawa N, Muranaka T, et al. Superconductivity at 39 K in magnesium diboride [J]. Nature, 2001, 410(6824): 63
4 Jung C U, Park M S, Kang W K, et al. Temperature and magnetic field dependent resistivity of MgB2 sintered at high temperature and high pressure condition [J]. Phyisica C, 2001, 353(3): 162
5 Dancer C E J, Prabhakaran D, Basoglu M, et al. Fabrication and properties of dense ex situ magnesium diboride bulk material synthesized using spark plasma sintering [J]. Superconductor Science and Technology, 2009, 22(9): 095003
6 Kang D K, Kim D W, Choi S H, et al. Phase Formation of MgB2 Superconducting Materials Fabricated by Spark Plasma Sintering [J]. Metals and Materials International, 2009, 15(1): 15
7 Tamaki H, Ohashi W, Kitazawa H, et al. Anisotropic grain connectivity in shock consolidated MgB2 bulk samples [J]. Superconductor Science and Technology, 2004, 17(6): 799
8 Ohashi W, Takenaka K, Kondo T, et al. Applied pressure-dependent anisotropic grain connectivity in shock consolidated MgB2 samples [J]. Physica C, 2006, 444(1): 5
9 SpA Edison. Italian Patent Appl [P], US 6302058, 2001
10 Giunchi G. Conference Proceedings SATT11 [R], Italy: Vietri S M, SA, 2002
11 Giunchi G, Ceresara S, Ripamonti G, et al. International Workshop BOROMAG [R], Italy: Genova, 2002
12 Giunchi G. High density MgB2 obtained by reactive liquid Mg infiltration [J]. International Journal of Modern Physics B, 2003, 17(4): 453
13 Giunchi G, Ceresara S, Ripamonti G, et al. MgB2 reactive sintering from the elements [J]. IEEE Transactions on Applied Superconductivity, 2003, 13(2): 3060
14 Giunchi G, Raineri S, Wesche R, et al. The voltage-current relations for MgB2 obtained by reactive liquid infiltration [J]. Physica C, 2004, 401(1): 310
15 Giunchi G, Ginocchio S, Raineri S, et al. High density MgB2 bulk materials of different grains size: supercurrents instability and losses in variable magnetic fields [J]. IEEE Transactions on Applied Superconductivity, 2005, 15(2): 3230
16 Gozzelino L, Gerbaldo R, Ghigo G, et al. Effects of annealing and nanoparticle doping on electrical properties of MgB2 bulks grown by reactive Mg liquid infiltration technique [J]. IEEE Transactions on Applied Superconductivity, 2009, 19(3): 3524
17 Giunchi G, Orecchia C, Malpezzi L, et al. Analysis of the minority crystalline phases in bulk superconducting MgB2 obtained by reactive liquid Mg infiltration [J]. Physica C, 2006, 433(4): 182
18 Giunchi G, Malpezzi L, Masciocchi N. A new crystalline phase of the boron-rich metal-boride family: the Mg2B25 species [J]. Solid State Sciences, 2006, 8(10): 1202
19 Cavallin T, Young E A, Beduz C, et al. Thermal conductivity of bulk MgB2 produced by infiltration of different boron powders [J]. IEEE Transactions on Applied Superconductivity, 2007, 17(2): 2770
20 Figini Albisetti A, Saglietti L, Perini E, et al. The Mg2B25 formation and its role in the preparation of bulk MgB2 superconductors [J]. Solid State Sciences, 2012, 14(11): 1632
21 Giunchi G, Ripamontia G, Cavallin T, et al. The reactive liquid Mg infiltrantion process to produce large superconducting bulk MgB2 manufacts [J]. Cryogenics, 2006, 46(2): 237
22 Giunchi G. MgB2 superconductive inserts:products between bulks and wires [J]. IEEE Transactions On Applied Superconductivity, 2011, 21(3): 1564
23 Bhagurkar A G, Yamamoto A, Hari Babu N, et al. Synthesis of dense bulk MgB2 by an infiltration and growth process [J]. Superconductor Science and Technology, 2015, 28(1): 015012
24 Bhagurkar A G, Hari Babu N, Dennis A R, et al. Characterization of Bulk MgB2 Synthesized by Infiltration and Growth [J]. IEEE Transactions On Applied Superconductivity, 2015, 25(3): 6801504
25 Bhagurkar A G, Yamamoto A, Anguilano L, et al. A trapped magnetic field of 3 T in homogeneous, bulk MgB2 superconductors fabricated by a modified precursor infiltration and growth process [J]. Superconductor Science and Technology, 2016, 29(3): 035008
26 Bhagurkar A G, Yamamoto A, Dennis A R, et al. Microstructural evolution in infiltration-growth processed MgB2 bulk superconductors [J]. Journal of the American Ceramic Society, 2017, 100(6): 2451
27 Naito T, Sasaki T, Fujishiro H. A Proposal of new fabricating technique of large MgB2 bulk by a capsule method [J]. IEEE Transactions on Applied Superconductivity, 2012, 22(3): 4401703
28 Naito T, Sasaki T, Fujishiro H. Trapped magnetic field and vortex pinning properties of MgB2 superconducting bulk fabricated by a capsule method [J]. Superconductor Science and Technology, 2012, 25(9): 095012
29 Naito T, Ogino A, Fujishiro H. Potential ability of 3 T-class trapped field on MgB2 bulk surface synthesized by the infiltration-capsule method [J]. Superconductor Science and Technology, 2016, 29(11): 115003
30 Ogino A, Naito T, Fujishiro H. Optimization of infiltration and reaction process for the production of strong MgB2 bulk magnets [J]. IEEE Transactions on Applied Superconductivity, 2017, 27(4): 6800905
31 Zhang Z L, Tian M, Ma L, et al. A novel gas-solid reaction process to synthesize low oxygen MgB2 powder using Mg vapour [J]. Superconductor Science and Technology, 2019, 32(1): 015015
32 Tian M.Synthesis and study on non-oxygen MgB2 powders [D]. Beijing: BeijingUniversity of Technology, 2018
32 田民. 无氧MgB2粉末的制备及研究 [D]. 北京: 北京工业大学, 2018
33 Schmitt R, Glaser J, Wenzel T, et al. A reactivity study in the Mg-B system reaching for an improved synthesis of pure MgB2 [J]. Physica C, 2006, 436(1): 38
34 Matera D, Bonura M, Barth C, et al. Rapid synthesis of MgB2 by inductive heating [J]. IEEE Transactions on Applied Superconductivity, 2018, 28(4): 6200405
35 Giunchi G, Saglietti L, Ripamonti G, et al. Superconducting joints between MgB2 wires and bulks [J]. IEEE Transactions on Applied Superconductivity, 2010, 20(3): 1524
36 Luo W H, Huang Z G, Cai X W, et al. MgB2 superconducting joint technique based on mg diffusion method [J]. IEEE Transactions on Applied Superconductivity, 2019, 29(5): 6200805
37 Rabbers J J, Oomen M P, Bassani E, et al. Magnetic shielding capability of MgB2 cylinders [J]. Superconductor Science and Technology, 2010, 23(12): 125003
38 Arpaia P, Ballarino A, Giunchi G, et al. MgB2 cylindrical superconducting shielding for cryogenic measurement applications: a case study on DC current transformers [J]. Journal of instrumentation, 2014, 9: P04020
39 Giunchi G, Turrioni D, Kashikhin V, et al. Feasibility study of a MgB2 superconducting magnetic cloak [J]. IEEE Transactions on Applied Superconductivity, 2016, 26(3): 8801005
40 Huang Z, Luo W H, Cai X W, et al. Magnetic shielding capability of MgB2 cup made by liquid infifiltration process [J]. IEEE Transactions on Applied Superconductivity, 2019, 29(5): 7000405
41 Perini E, Giunchi G, Saglietti L, et al. Magnetic field trapping in MgB2 bulks and inserts [J]. IEEE Transactions on Applied Superconductivity, 2011, 21(3): 2690
42 Marignetti F, Cavaliere V, Giunchi G, et al. Use of MgB2 superconductors for excitation field in synchronous machines—part II: Inserts [J]. IEEE Transactions on Applied Superconductivity, 2013, 23(4): 8002606
43 Patela A, Giunchi G, Figini Albisetti A, et al. High force magnetic levitation using magnetized superconducting bulks as a field source for bearing applications [J]. Physics Procedia, 2012, 36: 937
44 Patel A, Hopkins S C, Giunchi G, et al. The use of an MgB2 hollow cylinder and pulse magnetized (RE)BCO bulk for magnetic levitation applications [J]. IEEE Transactions on Applied Superconductivity, 2013, 23(3): 6800604
[1] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[2] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[3] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[4] 何颖, 李超群, 陈小立, 龙芝梅, 赖嘉琪, 邵斌, 马毅龙, 陈登明, 董季玲. 高性能Sm2Fe17N x 粉体制备的研究进展[J]. 材料研究学报, 2022, 36(5): 321-331.
[5] 邵思武, 郑宇亭, 安康, 黄亚博, 陈良贤, 刘金龙, 魏俊俊, 李成明. 偏压技术在金刚石薄膜制备中应用的进展[J]. 材料研究学报, 2022, 36(3): 161-174.
[6] 宋小龙, 骆伟静, 南艳丽. 碳纳米角的制备及其应用进展[J]. 材料研究学报, 2021, 35(6): 401-410.
[7] 郎振乾, 叶政, 杨健, 黄继华. 单晶高温合金表面缺陷焊接修复的研究进展[J]. 材料研究学报, 2021, 35(3): 161-174.
[8] 李壮, 须秋洁, 刘国金, 张耘箫, 周岚, 邵建中. 基于胶体微球自组装光子晶体的结构生色[J]. 材料研究学报, 2021, 35(3): 175-183.
[9] 俞建忠, 许新玲, 叶松. 载银沸石应用的研究进展[J]. 材料研究学报, 2021, 35(11): 801-810.
[10] 侯志全,郭萌,刘雨溪,邓积光,戴洪兴. 金属间化合物的合成及其催化应用[J]. 材料研究学报, 2020, 34(2): 81-91.
[11] 吴巧凤, 张富, 于月, 张萌, 于华, 樊栓狮. CsPbI2Br无机钙钛矿太阳能电池稳定性的研究进展[J]. 材料研究学报, 2020, 34(11): 811-821.
[12] 周海涛, 汪彦博, 肖旅, 孙京丽, 徐玉棱, 陈舸. 含碳增强体镁基复合材料的制备和界面调控的研究现状及发展趋势[J]. 材料研究学报, 2020, 34(11): 801-810.
[13] 雷玄威,周栓宝,黄继华. 超高强度船体结构钢焊接性的研究现状和趋势[J]. 材料研究学报, 2020, 34(1): 1-15.
[14] 王建强; 马长松; 张甲; 侯万良; 常新春 . Al基合金体系非晶形成能力的相关理论进展[J]. 材料研究学报, 2008, 22(2): 113-119.
[15] 曹勇; 吴义强; 合田公一. 麻纤维增强复合材料的研究进展[J]. 材料研究学报, 2008, 22(1): 10-17.