Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (5): 357-363    DOI: 10.11901/1005.3093.2020.247
  研究论文 本期目录 | 过刊浏览 |
石墨烯/醋酸掺杂态聚苯胺的制备及其防腐性能
杨小刚1, 崔世宏1, 李斌2(), 王传洁1, 韩捷佳1
1.青岛科技大学环境与安全工程学院 青岛 266042
2.青岛科技大学材料科学与工程学院 青岛 266042
Preparation and Corrosion Resistance of Graphene/Acetic Acid Doped Polyaniline
YANG Xiaogang1, CUI Shihong1, LI Bin2(), WANG Chuanjie1, HAN Jiejia1
1.College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
2.College of Material Science Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
引用本文:

杨小刚, 崔世宏, 李斌, 王传洁, 韩捷佳. 石墨烯/醋酸掺杂态聚苯胺的制备及其防腐性能[J]. 材料研究学报, 2021, 35(5): 357-363.
Xiaogang YANG, Shihong CUI, Bin LI, Chuanjie WANG, Jiejia HAN. Preparation and Corrosion Resistance of Graphene/Acetic Acid Doped Polyaniline[J]. Chinese Journal of Materials Research, 2021, 35(5): 357-363.

全文: PDF(6403 KB)   HTML
摘要: 

在醋酸体系中用原位聚合法将石墨烯(RGO)与不同比例的苯胺(ANI)合成RGO/PANI一次掺杂态产物,用氨水解掺杂后再掺杂醋酸制备出RGO/PANI二次掺杂态产物。使用红外光谱、紫外光谱和扫描电镜等手段表征产物的结构和形貌并用电化学技术测试其防腐性能。结果表明,RGO与ANI质量比为1:10时生成的一次掺杂态产物形貌最好,防腐效果最佳;RGO表面生长的聚苯胺长度为300~650 nm,直径为70~100 nm,产物的缓蚀效率可达73.19%;RGO/PANI二次掺杂态产物为石墨烯/醋酸掺杂态聚苯胺;醋酸掺杂可明显改善产物的结构和形貌并提高其缓蚀效率,缓蚀效率可达到80.21%,防腐性能优异。

关键词 复合材料石墨烯聚苯胺醋酸二次掺杂防腐    
Abstract

The primary doped products of RGO/PANI were synthesized via in situ polymerization method in acetic acid with graphene (RGO) and different proportions aniline (ANI) as raw materials, and then the secondary doped products of RGO/PANI were obtained via de-doping with ammonia and afterwards re-doping with acetic acid. The structure and morphology of the prepared products were characterized by IR, UV and SEM. Their anticorrosion performance was assessed by electrochemical workstation. The results show that the primary doped products with the mass ratio 1:10 of RGO to ANI had the best morphology and anti-corrosion property. The polyaniline grown on the surface of graphene is about 300~650 nm in length and 70~100 nm in diameter, and the corrosion inhibition efficiency was up to 73.19%. The products obtained by secondary doping of acetic acid had better morphology, higher corrosion inhibition efficiency and excellent corrosion resistance performance. The corrosion inhibition efficiency is up to 80.21%.

Key wordscomposite    graphene    polyaniline    acetic acid    secondary doping    anti-corrosion
收稿日期: 2020-06-22     
ZTFLH:  TB332  
基金资助:国家自然科学基金(41106070);重油加工国家重点实验室项目(SKLOP201603003)
作者简介: 杨小刚,男,1977年生,博士生,副教授
图1  一次掺杂态PANI、二次掺杂态、RGO/ANI为1:5时、RGO/ANI为1:10时、RGO/ANI为1:15时、RGO/ANI为1:20时、RGO/ANI为1:25时以及RGO/二次掺杂态PANI的形貌
图2  一次掺杂产物和二次掺杂产物的红外光谱图
图3  一次掺杂产物和二次掺杂产物的紫外光谱图
图4  一次掺杂产物和二次掺杂产物的极化曲线图
RGO:ANI(mass ratio)Ecorr/mVbc/mV·dec-1ba/mV·dec-1Icorr/μA·cm-2IE/%
Bare steel--625.95389.74576.42924.032-
RGO-633.329132.66088.28314.28240.57
PANI-692.816102.24764.92212.42248.31
1:5-757.227136.95176.7799.15361.91
1:10-773.516142.29373.3166.44273.19
HAC1:15-747.692106.61670.5317.42569.10
1:20-759.947130.04671.9267.71367.91
1:25-767.345123.73085.2968.73063.67
Re-doped PANI-746.63685.53773.3979.36361.04
RGO/re-doped PANI10-780.98792.37059.4174.75480.21
表1  极化曲线的拟合结果
图5  一次掺杂产物和二次掺杂产物的电化学阻抗谱
图6  阻抗谱等效电路
RGO:ANI(mass ratio)OCP vs. SCE/mV

Rp

/Ω·cm2

Bare steel--625.953-
RGO-633.329356.3
PANI-692.816476.3
1:5-757.227713.2
1:10-773.5161209.0
HAC1:15-747.692883.5
1:20-759.9471070.0
1:25-767.345939.1
Re-doped PANI-746.6361248.0
RGO/re-doped PANI10-780.9872523.0
表2  电化学阻抗谱的拟合结果
1 Zhang M, Wang X L, Yang T, et al. Polyaniline/graphene hybrid fibers as electrodes for flexible supercapacitors [J]. Synth. Met., 2020, 268: 116484
2 Wei D Y, Guo S K, Zhao Y N. Advances in the preparation and applications of graphene [J]. New Chem. Mater., 2011, 39(6): 11
2 魏德英, 国术坤, 赵永男. 石墨烯的制备与应用研究进展 [J]. 化工新型材料, 2011, 39(6): 11
3 Kyhl L, Nielsen S F, Čabo A G, et al. Graphene as an anti-corrosion coating layer [J]. Faraday Discuss., 2015, 180: 495
4 Yuan X H, Zhang Q F, Li J G. Corrosion of materials and Environmental Pollution [A]. Proceedings of National Corrosion Congress [C]. Yinchuan: China Society for Corrosion and Protection, 2011
4 袁训华, 张启富, 李金桂. 材料腐蚀与环境污染 [A]. 全国腐蚀大会 [C]. 银川: 中国腐蚀与防护学会, 2011
5 Wu Y S, Zheng J S. Electrochemical Protection and Corrosion Inhibitor Application Technology [M]. Beijing: Chemical Industry Press, 2006
5 吴荫顺, 郑家燊. 电化学保护和缓蚀剂应用技术 [M]. 北京: 化学工业出版社, 2006
6 Kim J, Kim S. Preparation and electrochemical analysis of graphene/polyaniline composites prepared by aniline polymerization [J]. Res. Chem. Int., 2014, 40: 2519
7 Cai K W, Zuo S X, Luo S P, et al. Preparation of polyaniline/graphene composites with excellent anti-corrosion properties and their application in waterborne polyurethane anticorrosive coatings [J]. RSC Adv., 2016, 6: 95965
8 Zou M M, Li X R, Shen Y D, et al. Preparation and properties of modified graphene oxide/polyaniline anticorrosive materials [J]. Fine Chem., 2018, 35: 891
8 邹明明, 李小瑞, 沈一丁等. 改性氧化石墨烯/聚苯胺防腐材料的制备及性能 [J]. 精细化工, 2018, 35: 891
9 Yang X G, Wang L, Jin S Y, et al. Synthesis and properties of Polyaniline Nanofibers secondary doped with phosphoric acid [J]. J. Chem. Eng. Chin. Univ., 2015, 29: 664
9 杨小刚, 王莉, 金思毅等. 磷酸二次掺杂聚苯胺纳米纤维的合成及其性能的研究 [J]. 高校化学工程学报, 2015, 29: 664
10 Wang P, Feng Y, Fang J, et al. Effect of feed ratios on energy storage of PANi/GO composites [J]. Electr. Comp. Mater., 2017, 36(9): 54
10 王攀, 冯玥, 方晶等. 原料配比对聚苯胺/氧化石墨烯复合材料储能的影响 [J]. 电子元件与材料, 2017, 36(9): 54
11 Gao T. Preparation and anti-corrosion property of the redoped polyaniline [D]. Qingdao: Ocean University of China, 2012
11 高婷. 二次掺杂聚苯胺的合成及其防腐性能的研究 [D]. 青岛: 中国海洋大学, 2012
12 Chang C H, Huang T C, Peng C W, et al. Novel anticorrosion coatings prepared from polyaniline/graphene composites [J]. Carbon, 2012, 50: 5044
13 Wei M. Preparation and properties of redoped pani nanomaterials [D]. Qingdao: Qingdao University of Science and Technology, 2018
13 魏民. 二次掺杂聚苯胺纳米材料的制备及其性能研究 [D]. 青岛: 青岛科技大学, 2018
14 Prashanth J. Reddy B V. Study on structure, vibrational analysis and molecular characteristics of some halogen substituted azido-phenylethanones using FTIR spectra and DFT [J]. J. Mol. Struct., 2018, 1155: 582
15 Fazli-Shokouhi S, Nasirpouri F, Khatamian M. Polyaniline-modified graphene oxide nanocomposites in epoxy coatings for enhancing the anticorrosion and antifouling properties [J]. J. Coat. Technol. Res., 2019, 16: 983
16 Zhao Y, Ma J Q, Chen K, et al. One-pot preparation of Graphene-based Polyaniline conductive Nanocomposites for anticorrosion coatings [J]. Nano, 2017, 12: 1750056
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.