|
|
CoFe2O4-Co3Fe7纳米粒子及CoFe2O4/多孔碳的制备及其电磁性能研究 |
李万喜( ), 杜意恩, 郭芳, 陈勇强 |
晋中学院化学化工系 晋中 030619 |
|
Preparation and Electromagnetic Properties of CoFe2O4-Co3Fe7 Nanoparticles and CoFe2O4/Porous Carbon |
LI Wanxi( ), DU Yi'en, GUO Fang, CHEN Yongqiang |
Department of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong 030619, China |
引用本文:
李万喜, 杜意恩, 郭芳, 陈勇强. CoFe2O4-Co3Fe7纳米粒子及CoFe2O4/多孔碳的制备及其电磁性能研究[J]. 材料研究学报, 2021, 35(4): 302-312.
Wanxi LI,
Yi'en DU,
Fang GUO,
Yongqiang CHEN.
Preparation and Electromagnetic Properties of CoFe2O4-Co3Fe7 Nanoparticles and CoFe2O4/Porous Carbon[J]. Chinese Journal of Materials Research, 2021, 35(4): 302-312.
1 |
Xie P T, Li H Y, He B, et al. Bio-gel derived nickel/carbon nanocomposites with enhanced microwave absorption [J]. J. Mater. Chem. C, 2018, 6(32): 8812
|
2 |
Lv H L, Ji G B, Liu W, et al. Achieving hierarchical hollow carbon@Fe@Fe3O4 nanospheres with superior microwave absorption properties and lightweight features [J]. J. Mater. Chem. C, 2015, 3(39): 10232
|
3 |
Li X A, Du D X, Wang C S, et al. In situ synthesis of hierarchical rose-like porous Fe@C with enhanced electromagnetic wave absorption [J]. J. Mater. Chem. C, 2018, 6(38): 558
|
4 |
Wang K F, Chen Y J, Tian R, et al. Porous Co-C core-shell nanocomposites derived from Co-MOF-74 with enhanced electromagnetic wave absorption performance [J]. ACS Appl. Mater. Interfaces, 2018, 10(13): 11333
|
5 |
Shen G Z, Ren J Z, Zhao B, et al. Magnetic hollow mesoporous carbon composites with impedance matching for highly effective microwave absorption [J]. J. Mater. Sci., 2019, 54(5): 4024
|
6 |
Li N, Huang G W, Li Y Q, et al. Enhanced microwave absorption performance of coated carbon nanotubes by optimizing the Fe3O4 nanocoating structure [J]. ACS Appl. Mater. Interfaces, 2017, 9(3): 2973
|
7 |
Lin Y, Wang J J, Yang H B, et al. In situ preparation of PANI/ZnO/CoFe2O4 composite with enhanced microwave absorption performance [J]. J. Mater. Sci. Mater. Electron., 2017, 28(23): 1
|
8 |
Moitra D, Hazra S, Ghosh B K, et al. A facile low temperature method for the synthesis of CoFe2O4 nanoparticles possessing excellent microwave absorption properties [J]. RSC Adv., 2015, 5(63): 51130
|
9 |
Li Y F, Hu Y J, Huo J C, et al. Stable core shell Co3Fe7-CoFe2O4 nanoparticles synthesized via flame spray pyrolysis approach [J]. Ind. Eng. Chem. Res., 2012, 51(34): 11157
|
10 |
Li W X, Wang L C, Li G M, et al. Hollow CoFe2O4-Co3Fe7 microspheres applied in electromagnetic absorption [J]. J. Magn. Magn. Mater., 2015, 377(1): 259
|
11 |
Li G M, Wang L C, Li W X, et al. Fe-, Co-, and Ni-loaded porous activated carbon balls as lightweight microwave absorbents [J]. ChemPhysChem., 2016, 16(16): 3458
|
12 |
Zhang K C, Gao X B, Zhang Qian, et al. Synthesis, characterization and electromagnetic wave absorption properties of asphalt carbon coated graphene/magnetic NiFe2O4 modified multi-wall carbon nanotube composites [J]. J. Alloys Compd., 2017, 721(15): 268
|
13 |
Estevez D, Qin F X, Quan L, et al. Complementary design of nano-carbon/magnetic microwire hybrid fiber for tunable microwave absorption [J]. Carbon, 2018, 132: 486
|
14 |
Zhang Y L, Wang X X, Cao M S. Confinedly implanted NiFe2O4-rGO: cluster tailoring and highly tunable electromagnetic properties for selective-frequency microwave absorption [J]. Nano Res., 2018, 11(3): 1426
|
15 |
Wang L X, Guan Y K, Qiu X, et al. Efficient ferrite/Co/porous carbon microwave absorbing material based on ferrite@metal-organic framework [J]. Chem. Eng. J., 2017, 326: 945
|
16 |
Yan F, Guo D, Zhang S, et al. An ultra-small NiFe2O4 hollow particle/graphene hybrid: Fabrication and electromagnetic wave absorption property [J]. Nanoscale, 2018, 10(6): 2697
|
17 |
Liang X H, Quan B, Chen J B, et al. Nano bimetallic@carbon layer on porous carbon nanofibers with multiple interfaces for microwave absorption applications [J]. ACS Appl. Nano Mater., 2018, 1(10): 5712
|
18 |
Ruan W J, Mu C P, Wang B C, et al. Metal–organic framework derived cobalt phosphosulfide with ultrahigh microwave absorption properties [J]. Nanotechnology, 2018, 29: 405703
|
19 |
Zhao H Q, Cheng Y, Ma J N, et al. A sustainable route from biomass cotton to construct lightweight and high-performance microwave absorber [J]. Chem. Eng. J., 2018, 339(1): 432
|
20 |
Li W X, Wang L C, Li G M, et al. Co3Fe7/C core-shell microspheres as a lightweight microwave absorbent [J]. Mater. Chem. Phys., 2015, 163: 431
|
21 |
Li G M, Zhu B S, Liang L P, et al. Core-shell Co3Fe7@C composite as efficient microwave absorbent [J]. Acta Phys. -Chim. Sin., 2017, 33 (8): 1715
|
21 |
力国民, 朱保顺, 梁丽萍等. 基于核壳结构 Co3Fe7@C的高效微波吸收材料[J]. 物理化学学报, 2017, 33 (8): 1715
|
22 |
Du J H, Sun C, Bai S, et al. Microwave electromagnetic characteristics of a microcoiled carbon fibers/paraffin wax composite in Ku band [J]. J. Mater. Res., 2002, 17(05):1232
|
23 |
Jiang H, Guo J, Zhao L, et al. Preparation and microwave absorption properties of LiZn ferrite [J]. J. Inorg. Mater. 2010, 25(1): 73
|
23 |
江红, 郭佳, 赵璐等. LiZn铁氧体的制备和吸波性能研究 [J]. 无机材料学报, 2010, 25(1): 73
|
24 |
Cheng Y, Ji G B, Li Z Y, et al. Facile synthesis of FeCo alloys with excellent microwave absorption in the whole Ku-band: effect of Fe/Co atomic ratio [J]. J. Alloys Compd., 2017, 704(15): 289
|
25 |
Xu Q, Wang L X, Zhu H L, et al. Lightweight and efficient microwave absorbing materials based on walnut shell-derived nanoporous carbon [J]. Nanoscale, 2017, 9: 7408
|
26 |
Chen C, Xi J B, Zhou E, et al. Porous graphene microflowers for high-performance microwave absorption [J]. Nano-Micro Lett., 2018, 10: 26
|
27 |
Liang X H, Quan B, Man Z M, et al. Self-assembly three-dimensional porous carbon networks for efficient dielectric attenuation [J]. ACS Appl. Mater. Interfaces, 2019, 11(33), 30228
|
28 |
Wu Z C, Tian K, Huang T, et al. Hierarchically porous carbons derived from biomasses with excellent microwave absorption performance [J]. ACS. Appl. Mater. Inter, 2018,10 (3): 11108
|
29 |
Lv H L, Ji G B, Liang X H, et al. A novel rod-like MnO2@Fe loading on grapheme giving excellent electromagnetic absorption properties [J]. J. Mater. Chem. C, 2015, 3(19): 5056
|
30 |
Jiang Z Y, Si H X, Chen X, et al. Simultaneous enhancement of impedance matching and the absorption behavior of BN/RGO nanocomposites for effciency microwave absorption [J]. Compos. Commun., 2020, 22: 100503.
|
31 |
Quan B, Liang X H, Ji G B, et al. Cross-linking-derived synthesis of porous CoxNiy/C nanocomposites for excellent electromagnetic behaviors [J]. ACS Appl. Mater. Interfaces, 2017, 9 (44): 38814
|
32 |
Liu W, Tan S J, Yang Z H, et al. Enhanced low frequency electromagnetic properties of MOF-derived cobalt through interface design [J]. ACS Appl. Mater. Interfaces, 2018, 10(37),1
|
33 |
Wang G Z, Peng X G, Yu L, et al. Enhanced microwave absorption of ZnO coated with Ni nanoparticles produced by atomic layer deposition [J]. J. Mater. Chem. A, 2015, 3: 2734
|
34 |
Li N, Cao M H, Hu C W. A simple approach to spherical nickel-carbon monoliths as light-weight microwave absorbers [J]. J. Mater. Chem., 2012, 22: 18426
|
35 |
Cheng Y, Seow J Z Y, Zhao H Q, et al. A flexible and lightweight biomass reinforced microwave absorber [J]. Nano-Micro Lett., 2020, 12: 125
|
36 |
Liang X H, Man Z M, Quan B, et al. Environment stable CoxNiy encapsulation in stacked porous carbon nanosheets for enhanced microwave absorption [J]. Nano-Micro Lett., 2020, 12: 102
|
37 |
Li Z T, Ye M Q, Han A J, et al. Preparation, characterization and microwave absorption properties of NiFe2O4 and its composites with conductive polymer [J]. J. Mater. Sci.-Mater. Electron., 2016, 27: 1031
|
38 |
Yan J, Huang Y, Chen X F, et al. Conducting polymers-NiFe2O4 coated on reduced graphene oxide sheets as electromagnetic (EM) wave absorption materials [J]. Synth. Metals, 2016, 221: 291
|
39 |
Zou C W, Yao Y D, Wei N D, et al. Electromagnetic wave absorption properties of mesoporous Fe3O4/C nanocomposites [J].Composites Part B, 2015, 77: 209
|
40 |
Xie P T, Li H Y, He B, et al. Bio-gel derived nickel/carbon nanocomposites with enhanced microwave absorption [J]. J. Mater. Chem. C, 2018, 6(32): 8812
|
41 |
Lü Y Y, Wang Y T, Li H L, et al. MOF-derived porous Co/C nanocomposites with excellent electromagnetic wave absorption properties [J]. ACS Appl. Mater. Interfaces, 2015, 7(24): 13604
|
42 |
Fu M, Jiao Q Z, Zhao Y, et al. Vapor diffusion synthesis of CoFe2O4 hollow sphere/graphene composites as absorbing materials [J]. J. Mater. Chem. A, 2014, 2(3): 735
|
43 |
Qiang R, Du Y C, Zhao H T, et al. Metal organic framework-derived Fe/C nanocubes toward efficient microwave absorption [J]. J. Mater. Chem. A, 2015, 3(25): 13426
|
44 |
Ding D, Wang Y, Li X D, et al. Rational design of core-shell Co@C microspheres for high-performance microwave absorption [J]. Carbon, 2017, 111: 722
|
45 |
Li G M, Wang L C, Li W X, et al. Mesoporous Fe/C and core-shell Fe-Fe3C@C composites as efficient microwave absorbents [J]. Microporous Mesoporous Mater., 2015, 211: 97
|
46 |
Fang J Y, Liu T, Chen Z, et al. A wormhole-like porous carbon/magnetic particles composite as an efficient broadband electromagnetic wave absorber [J]. Nanoscale, 2016, 8: 8899
|
47 |
Zhen L, Jiang J T, Shao W Z, et al. Resonance-antiresonance electromagnetic behavior in a disordered dielectric composite [J]. Appl. Phys. Lett., 2007, 90(14): 142907
|
48 |
Yang H B, Ye T, Lin Y. Microwave absorbing properties based on polyaniline/magnetic nanocomposite powders [J]. RSC Adv., 2015, 5(125): 103488
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|