Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (4): 302-312    DOI: 10.11901/1005.3093.2020.328
  研究论文 本期目录 | 过刊浏览 |
CoFe2O4-Co3Fe7纳米粒子及CoFe2O4/多孔碳的制备及其电磁性能研究
李万喜(), 杜意恩, 郭芳, 陈勇强
晋中学院化学化工系 晋中 030619
Preparation and Electromagnetic Properties of CoFe2O4-Co3Fe7 Nanoparticles and CoFe2O4/Porous Carbon
LI Wanxi(), DU Yi'en, GUO Fang, CHEN Yongqiang
Department of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong 030619, China
引用本文:

李万喜, 杜意恩, 郭芳, 陈勇强. CoFe2O4-Co3Fe7纳米粒子及CoFe2O4/多孔碳的制备及其电磁性能研究[J]. 材料研究学报, 2021, 35(4): 302-312.
Wanxi LI, Yi'en DU, Fang GUO, Yongqiang CHEN. Preparation and Electromagnetic Properties of CoFe2O4-Co3Fe7 Nanoparticles and CoFe2O4/Porous Carbon[J]. Chinese Journal of Materials Research, 2021, 35(4): 302-312.

全文: PDF(15687 KB)   HTML
摘要: 

在5% H2+95% N2气氛下,还原CoFe2O4纳米粒子制备了CoFe2O4-Co3Fe7纳米粒子;以焙烧黄麻纤维得到的多孔碳纤维为碳源用水热法将CoFe2O4纳米粒子负载到多孔碳中,制备出CoFe2O4/多孔碳。使用X射线衍射仪、扫描电子显微镜、透射电子显微镜、拉曼光谱仪、同步热分析仪等手段对材料进行表征,并使用矢量网络分析仪测量了复合材料的电磁参数和微波吸收性能。结果表明,CoFe2O4-Co3Fe7纳米粒子和CoFe2O4/多孔碳的微波吸收性能明显优于CoFe2O4纳米粒子。CoFe2O4-Co3Fe7纳米粒子的有效频宽(反射损耗<-10 dB的频率宽度)可达4.8 GHz。CoFe2O4/多孔碳的有效频宽可达6 GHz,覆盖了整个Ku波段(12~18 GHz)。这些材料优异的微波吸收性能,可归因于合适的介电常数、大的介电损耗、多孔结构以及介电损耗和磁损耗的协同作用。

关键词 复合材料微波吸收性能水热法CoFe2O4纳米粒子黄麻纤维CoFe2O4/多孔碳    
Abstract

CoFe2O4-Co3Fe7 nanoparticles were successfully prepared by reducing CoFe2O4 nanoparticles in 5% H2 + 95% N2. Meanwhile, CoFe2O4 nanoparticles were successfully loaded onto the porous carbon by hydrothermal method with the porous carbon fiber calcined from jute fiber as precursor. The prepared two composites were characterized by X-ray diffractometer (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectrometer, and simultaneous thermal analyzer (STA). Their electromagnetic parameters and microwave absorption performances were measured by vector network analyzer (VNA). The results show that the microwave absorption performances of CoFe2O4-Co3Fe7 nanoparticles and CoFe2O4/porous carbon are obviously better than that of the plain CoFe2O4 nanoparticles. The effective bandwidth (frequency width of reflection loss <-10 dB) of CoFe2O4-Co3Fe7 nanoparticles is 4.8 GHz, while that of CoFe2O4/porous carbon can reach 6 GHz, covering the entire Ku band (12~18 GHz). The excellent microwave absorption performance can be attributed to the appropriate dielectric constant, large dielectric loss, porous structure, and the synergistic effect of dielectric loss and magnetic loss. Owing to the characteristics of low cost, low density and good microwave absorption performance, the CoFe2O4/porous carbon has broad application prospect for Ku band as an economic, lightweight and broadband microwave absorbent.

Key wordscomposites    microwave absorption performance    hydrothermal method    CoFe2O4 nanoparticles    jute fiber    CoFe2O4/porous carbon
收稿日期: 2020-08-07     
ZTFLH:  TB332  
基金资助:山西省高校科技创新项目(2019L0883);山西省“1331工程”重点创新团队(PY201817);晋中学院“1331工程”重点创新团队(jzxycxtd2019005)
图1  CF、CF500和CF600的XRD谱
图2  CF、CF500和CF600的SEM和TEM照片
图3  不同频率下石蜡中CF、CF500和CF600的含量为75%时的反射损耗图
图4  石蜡中CF、CF500和CF600的含量为75%时的复介电常数、复磁导率和损耗因子
图5  石蜡中CF、CF500和CF600的含量为75%时的特征阻抗和衰减系数
  图6不同频率下石蜡中CF500和CF600含量50 %时的反射损耗
图7  石蜡中CF500和CF600含量50%时的复介电常数、复磁导率、损耗因子、Cole-Cole曲线(ε′对ε")以及C0值
图8  CoFe2O4/多孔碳的XRD谱和拉曼谱
图9  CoFe2O4/多孔碳的SEM照片和CoFe2O4/多孔碳上CoFe2O4纳米粒子的TEM照片
图10  CoFe2O4/多孔碳在空气气氛下的热重曲线
图11  不同频率下CoFe2O4/多孔碳的反射损耗、复介电常数、复磁导率和损耗因子
Sample

Thickness

/mm

Effective bandwidth

/GHz

Minimal reflection loss/dBReferences
NiFe2O4/polypyrrole2.04.542[37]
RGO-PANI-NiFe2O42.45.349.7[38]
Mesoporous Fe3O4/C2.02.0181[39]
Nickel/Carbon nanocomposites1.754.421.24[40]
MOF-derived porous Co/C nanocomposites2.55.8353[41]
CoFe2O4/graphene2.03.724.7[42]
Co3Fe7/C composite2.04.143.5[21]
CoFe2O4/porous carbon1.86.049.65This work
表1  一些微波吸收材料的性能
1 Xie P T, Li H Y, He B, et al. Bio-gel derived nickel/carbon nanocomposites with enhanced microwave absorption [J]. J. Mater. Chem. C, 2018, 6(32): 8812
2 Lv H L, Ji G B, Liu W, et al. Achieving hierarchical hollow carbon@Fe@Fe3O4 nanospheres with superior microwave absorption properties and lightweight features [J]. J. Mater. Chem. C, 2015, 3(39): 10232
3 Li X A, Du D X, Wang C S, et al. In situ synthesis of hierarchical rose-like porous Fe@C with enhanced electromagnetic wave absorption [J]. J. Mater. Chem. C, 2018, 6(38): 558
4 Wang K F, Chen Y J, Tian R, et al. Porous Co-C core-shell nanocomposites derived from Co-MOF-74 with enhanced electromagnetic wave absorption performance [J]. ACS Appl. Mater. Interfaces, 2018, 10(13): 11333
5 Shen G Z, Ren J Z, Zhao B, et al. Magnetic hollow mesoporous carbon composites with impedance matching for highly effective microwave absorption [J]. J. Mater. Sci., 2019, 54(5): 4024
6 Li N, Huang G W, Li Y Q, et al. Enhanced microwave absorption performance of coated carbon nanotubes by optimizing the Fe3O4 nanocoating structure [J]. ACS Appl. Mater. Interfaces, 2017, 9(3): 2973
7 Lin Y, Wang J J, Yang H B, et al. In situ preparation of PANI/ZnO/CoFe2O4 composite with enhanced microwave absorption performance [J]. J. Mater. Sci. Mater. Electron., 2017, 28(23): 1
8 Moitra D, Hazra S, Ghosh B K, et al. A facile low temperature method for the synthesis of CoFe2O4 nanoparticles possessing excellent microwave absorption properties [J]. RSC Adv., 2015, 5(63): 51130
9 Li Y F, Hu Y J, Huo J C, et al. Stable core shell Co3Fe7-CoFe2O4 nanoparticles synthesized via flame spray pyrolysis approach [J]. Ind. Eng. Chem. Res., 2012, 51(34): 11157
10 Li W X, Wang L C, Li G M, et al. Hollow CoFe2O4-Co3Fe7 microspheres applied in electromagnetic absorption [J]. J. Magn. Magn. Mater., 2015, 377(1): 259
11 Li G M, Wang L C, Li W X, et al. Fe-, Co-, and Ni-loaded porous activated carbon balls as lightweight microwave absorbents [J]. ChemPhysChem., 2016, 16(16): 3458
12 Zhang K C, Gao X B, Zhang Qian, et al. Synthesis, characterization and electromagnetic wave absorption properties of asphalt carbon coated graphene/magnetic NiFe2O4 modified multi-wall carbon nanotube composites [J]. J. Alloys Compd., 2017, 721(15): 268
13 Estevez D, Qin F X, Quan L, et al. Complementary design of nano-carbon/magnetic microwire hybrid fiber for tunable microwave absorption [J]. Carbon, 2018, 132: 486
14 Zhang Y L, Wang X X, Cao M S. Confinedly implanted NiFe2O4-rGO: cluster tailoring and highly tunable electromagnetic properties for selective-frequency microwave absorption [J]. Nano Res., 2018, 11(3): 1426
15 Wang L X, Guan Y K, Qiu X, et al. Efficient ferrite/Co/porous carbon microwave absorbing material based on ferrite@metal-organic framework [J]. Chem. Eng. J., 2017, 326: 945
16 Yan F, Guo D, Zhang S, et al. An ultra-small NiFe2O4 hollow particle/graphene hybrid: Fabrication and electromagnetic wave absorption property [J]. Nanoscale, 2018, 10(6): 2697
17 Liang X H, Quan B, Chen J B, et al. Nano bimetallic@carbon layer on porous carbon nanofibers with multiple interfaces for microwave absorption applications [J]. ACS Appl. Nano Mater., 2018, 1(10): 5712
18 Ruan W J, Mu C P, Wang B C, et al. Metal–organic framework derived cobalt phosphosulfide with ultrahigh microwave absorption properties [J]. Nanotechnology, 2018, 29: 405703
19 Zhao H Q, Cheng Y, Ma J N, et al. A sustainable route from biomass cotton to construct lightweight and high-performance microwave absorber [J]. Chem. Eng. J., 2018, 339(1): 432
20 Li W X, Wang L C, Li G M, et al. Co3Fe7/C core-shell microspheres as a lightweight microwave absorbent [J]. Mater. Chem. Phys., 2015, 163: 431
21 Li G M, Zhu B S, Liang L P, et al. Core-shell Co3Fe7@C composite as efficient microwave absorbent [J]. Acta Phys. -Chim. Sin., 2017, 33 (8): 1715
21 力国民, 朱保顺, 梁丽萍等. 基于核壳结构 Co3Fe7@C的高效微波吸收材料[J]. 物理化学学报, 2017, 33 (8): 1715
22 Du J H, Sun C, Bai S, et al. Microwave electromagnetic characteristics of a microcoiled carbon fibers/paraffin wax composite in Ku band [J]. J. Mater. Res., 2002, 17(05):1232
23 Jiang H, Guo J, Zhao L, et al. Preparation and microwave absorption properties of LiZn ferrite [J]. J. Inorg. Mater. 2010, 25(1): 73
23 江红, 郭佳, 赵璐等. LiZn铁氧体的制备和吸波性能研究 [J]. 无机材料学报, 2010, 25(1): 73
24 Cheng Y, Ji G B, Li Z Y, et al. Facile synthesis of FeCo alloys with excellent microwave absorption in the whole Ku-band: effect of Fe/Co atomic ratio [J]. J. Alloys Compd., 2017, 704(15): 289
25 Xu Q, Wang L X, Zhu H L, et al. Lightweight and efficient microwave absorbing materials based on walnut shell-derived nanoporous carbon [J]. Nanoscale, 2017, 9: 7408
26 Chen C, Xi J B, Zhou E, et al. Porous graphene microflowers for high-performance microwave absorption [J]. Nano-Micro Lett., 2018, 10: 26
27 Liang X H, Quan B, Man Z M, et al. Self-assembly three-dimensional porous carbon networks for efficient dielectric attenuation [J]. ACS Appl. Mater. Interfaces, 2019, 11(33), 30228
28 Wu Z C, Tian K, Huang T, et al. Hierarchically porous carbons derived from biomasses with excellent microwave absorption performance [J]. ACS. Appl. Mater. Inter, 2018,10 (3): 11108
29 Lv H L, Ji G B, Liang X H, et al. A novel rod-like MnO2@Fe loading on grapheme giving excellent electromagnetic absorption properties [J]. J. Mater. Chem. C, 2015, 3(19): 5056
30 Jiang Z Y, Si H X, Chen X, et al. Simultaneous enhancement of impedance matching and the absorption behavior of BN/RGO nanocomposites for effciency microwave absorption [J]. Compos. Commun., 2020, 22: 100503.
31 Quan B, Liang X H, Ji G B, et al. Cross-linking-derived synthesis of porous CoxNiy/C nanocomposites for excellent electromagnetic behaviors [J]. ACS Appl. Mater. Interfaces, 2017, 9 (44): 38814
32 Liu W, Tan S J, Yang Z H, et al. Enhanced low frequency electromagnetic properties of MOF-derived cobalt through interface design [J]. ACS Appl. Mater. Interfaces, 2018, 10(37),1
33 Wang G Z, Peng X G, Yu L, et al. Enhanced microwave absorption of ZnO coated with Ni nanoparticles produced by atomic layer deposition [J]. J. Mater. Chem. A, 2015, 3: 2734
34 Li N, Cao M H, Hu C W. A simple approach to spherical nickel-carbon monoliths as light-weight microwave absorbers [J]. J. Mater. Chem., 2012, 22: 18426
35 Cheng Y, Seow J Z Y, Zhao H Q, et al. A flexible and lightweight biomass reinforced microwave absorber [J]. Nano-Micro Lett., 2020, 12: 125
36 Liang X H, Man Z M, Quan B, et al. Environment stable CoxNiy encapsulation in stacked porous carbon nanosheets for enhanced microwave absorption [J]. Nano-Micro Lett., 2020, 12: 102
37 Li Z T, Ye M Q, Han A J, et al. Preparation, characterization and microwave absorption properties of NiFe2O4 and its composites with conductive polymer [J]. J. Mater. Sci.-Mater. Electron., 2016, 27: 1031
38 Yan J, Huang Y, Chen X F, et al. Conducting polymers-NiFe2O4 coated on reduced graphene oxide sheets as electromagnetic (EM) wave absorption materials [J]. Synth. Metals, 2016, 221: 291
39 Zou C W, Yao Y D, Wei N D, et al. Electromagnetic wave absorption properties of mesoporous Fe3O4/C nanocomposites [J].Composites Part B, 2015, 77: 209
40 Xie P T, Li H Y, He B, et al. Bio-gel derived nickel/carbon nanocomposites with enhanced microwave absorption [J]. J. Mater. Chem. C, 2018, 6(32): 8812
41 Lü Y Y, Wang Y T, Li H L, et al. MOF-derived porous Co/C nanocomposites with excellent electromagnetic wave absorption properties [J]. ACS Appl. Mater. Interfaces, 2015, 7(24): 13604
42 Fu M, Jiao Q Z, Zhao Y, et al. Vapor diffusion synthesis of CoFe2O4 hollow sphere/graphene composites as absorbing materials [J]. J. Mater. Chem. A, 2014, 2(3): 735
43 Qiang R, Du Y C, Zhao H T, et al. Metal organic framework-derived Fe/C nanocubes toward efficient microwave absorption [J]. J. Mater. Chem. A, 2015, 3(25): 13426
44 Ding D, Wang Y, Li X D, et al. Rational design of core-shell Co@C microspheres for high-performance microwave absorption [J]. Carbon, 2017, 111: 722
45 Li G M, Wang L C, Li W X, et al. Mesoporous Fe/C and core-shell Fe-Fe3C@C composites as efficient microwave absorbents [J]. Microporous Mesoporous Mater., 2015, 211: 97
46 Fang J Y, Liu T, Chen Z, et al. A wormhole-like porous carbon/magnetic particles composite as an efficient broadband electromagnetic wave absorber [J]. Nanoscale, 2016, 8: 8899
47 Zhen L, Jiang J T, Shao W Z, et al. Resonance-antiresonance electromagnetic behavior in a disordered dielectric composite [J]. Appl. Phys. Lett., 2007, 90(14): 142907
48 Yang H B, Ye T, Lin Y. Microwave absorbing properties based on polyaniline/magnetic nanocomposite powders [J]. RSC Adv., 2015, 5(125): 103488
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.