Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (4): 277-283    DOI: 10.11901/1005.3093.2020.166
  研究论文 本期目录 | 过刊浏览 |
微波烧结原位合成TiC增强钛复合材料的性能
胡满银1, 欧阳德来1(), 崔霞1, 杜海明2, 徐勇1
1.南昌航空大学材料科学与工程学院 南昌 330063
2.江西师范大学 南昌 330022
Properties of TiC Reinforced Ti-Composites Synthesized in Situ by Microwave Sintering
HU Manying1, OUYANG Delai1(), CUI Xia1, DU Haiming2, XU Yong1
1.School of Materials Science and Engineering, Nanchang Hangkong University, Jiangxi 330063, China
2.Jiangxi Normal University, Jiangxi 330022, China
引用本文:

胡满银, 欧阳德来, 崔霞, 杜海明, 徐勇. 微波烧结原位合成TiC增强钛复合材料的性能[J]. 材料研究学报, 2021, 35(4): 277-283.
Manying HU, Delai OUYANG, Xia CUI, Haiming DU, Yong XU. Properties of TiC Reinforced Ti-Composites Synthesized in Situ by Microwave Sintering[J]. Chinese Journal of Materials Research, 2021, 35(4): 277-283.

全文: PDF(4912 KB)   HTML
摘要: 

以纳米管(MWCNTs)和纯钛为原料,用微波烧结法原位合成TiC增强钛基复合材料,研究了这种材料的组织和性能并探讨了TiC增强相的生成机理。结果表明,微波烧结时MWCNTs与Ti原位生成TiC增强相。MWCNTs的添加量(质量分数,下同)低于1%时TiC呈现颗粒状且分布均匀,Ti基体致密;MWCNTs的添加量高于1.5%时TiC呈树枝晶形貌,Ti基体的组织粗化使复合材料出现较多的孔洞。MWCNTs的添加使材料由粘着磨损为主转变为磨粒磨损为主。随着MWCNTs添加量的提高,复合材料的显微硬度先提高后降低。MWCNTs添加量为1%的复合材料显微硬度最高(约为527HV)、耐磨性能最好(摩擦系数约为0.35)。与纯钛相比,TiC增强钛基复合材料的显微硬度提高了1.2倍,摩擦系数降低了0.4。

关键词 复合材料微波烧结TiC原位合成TiC增强钛基复合材料    
Abstract

Novel TiC reinforced Ti-based composites were synthesized via in situ microwave sintering with nanotubes (MWCNTs) and pure Ti as raw materials. The properties of the composites were investigated, and the formation mechanism of TiC reinforced phase of the composites was discussed. The results show that TiC reinforced phase could be generated in-situ in the Ti-matrix during microwave sintering. When the addition amount of MWCNTs <1% (in mass fraction), the formed TiC was granular-like and distributed uniformly in the dense Ti matrix of fine grains. When the addition amount of MWCNTs >1.5%, the formed TiC turns to be of dendritic morphology, while the Ti matrix is coarsened and the composite becomes porous. Sequentially, the wear mechanism of the composites will change from adhesive wear to abrasive wear due to the addition of MWCNTs. With the increasing addition amount of MWCNTs the microhardness of the composite increases firstly and then decreases. When the addition amount of MWCNTs is 1%, the acquired composite presents a higher microhardness of about 527HV and better wear resistance with the friction coefficient of about 0.35, which are 1.2 times more and 0.4 less than the corresponding terms of the pure Ti respectively.

Key wordscomposites    microwave sintering    TiC    in situ synthesis    TiC reinforced titanium composites
收稿日期: 2020-05-18     
ZTFLH:  TG146  
基金资助:国家自然科学基金(51761029)
作者简介: 胡满银,女,1994年生,硕士生
图1  制备钛基复合材料用原材料
图2  实验流程
图3  MWCNTs的添加量对TiC增强钛复合材料微观组织的影响
图4  不同MWCNTs添加量TiC增强钛复合材料的XRD谱
图5  TiC增强钛复合材料中两类TiC的形貌
图6  MWCNTs添加量对TiC增强钛复合材料相对密度的影响
图7  MWCNTs添加量对TiC增强钛复合材料硬度的影响
图8  不同MWCNTs添加量复合材料的摩擦因数与时间的关系
图9  不同MWCNTs添加量TiC增强钛复合材料的平均摩擦因数和磨损体积
图10  纯钛基体和不同MWCNTs添加量TiC增强钛复合材料的磨损微观形貌
1 Zai Y, Zhang Y L. Preparation of graphene/titanium matrix composites and their conductive properties [J]. Journal of Yunnan University: Natural Sciences Edition, 2019, 41(03): 551
1 张在玉, 梁益龙. 石墨烯/纯钛基复合材料的制备及其导电性能的研究 [J]. 云南大学学报(自然科学版), 2019, 41(03): 551
2 Zai Y, Zhang Y L. Preparation and interface analysis of graphene nanosheets reinforced pure titanium matrix composites [J]. Iron Steel Vanadium Titanium, 2019, 40(04): 45
2 张在玉, 梁益龙. 石墨烯纳米片增强纯钛基体复合材料的制备及界面分析 [J]. 钢铁钒钛, 2019, 40(04): 45
3 Su Y, Zuo Q, Yang G, et al. Compressive properties of the grahpene reinforced titanium composites [J]. Rare Metal Materials and Engineering, 2017, 46(12): 3882
3 苏颖, 左倩, 杨刚等. 石墨烯增强钛基复合材料的压缩变形行为研究 [J]. 稀有金属材料与工程, 2017, 46(12): 3882
4 Luo J M, Xie J. Microstructure and properties of TiC /Ti2Cu reinforced titanium matrix composites [J]. Transactions of Materials and Heat Treatment, 2019, 40(12): 1
4 罗军明, 谢娟. TiC/Ti2Cu增强钛基复合材料的组织性能 [J]. 材料热处理学报, 2019, 40(12): 1
5 Wang W, Zhou H X, Wang Q J, et al. Tribological properties of graphene reinforced titanium matrix composites [J]. Ordnance Material Science and Engineering, 2019, 42(01): 26
5 王伟, 周海雄, 王庆娟等. 石墨烯增强钛基复合材料的摩擦学性能研究 [J]. 兵器材料科学与工程, 2019, 42(01): 26
6 Thompson M S, Nardone V C. In-situ-reinforced titanium matrix composites [J]. Materials Science & Engineering A, 1991, 144(1-2): 121
7 Geng K, Lu W J, Zhang D. Microstructure and tensile properties of in situ synthesized (TiB+Y2O3)/Ti composites at elevated temperature [J]. Materials Science & Engineering A, 2003, 3360: 176
8 Lu W J, Zhang D, Zhang X N, et al. Microstructure and tensile properties of in situ (TiB+TiC)/Ti6242 (TiB:TiC=1:1) composites prepared by common casting technique [J]. Materials ence & Engineering A, 2001, 311(1-2): 142
9 Vasanthakumar K, Ghosh S, Koundinya N T B N, et al. Synthesis and mechanical properties of TiC_x and Ti(C, N) reinforced Titanium matrix in situ composites by reactive spark plasma sintering [J]. Materials Science & Engineering A, 2019, 759: 30
10 Khurram S. Munira, Yifeng Zheng et.al,Microstructure and mechanical properties of carbon nanotubes reinforcedtitanium matrix composites fabricated via spark plasma sintering [J]. Materials Science & Engineering A, 2017, 688: 505
11 Xianglong Sun, Yuanfei Hanet al. Rapid in-situ reaction synthesis of novel TiC and carbon nanotubes reinforced titanium matrix composites [J]. Journal of Materials Science & Technology, 2017, 33: 1165
12 Kondoh K, Threrujirapapong T, Umeda J, et al. High-temperature properties of extruded titanium composites fabricated from carbon nanotubes coated titanium powder by spark plasma sintering and hot extrusion [J]. Composites Science & Technology, 2012, 72: 1291
13 Zhu F X, Yi J H, Peng Y D. Sintering response of copper powder metal compact in microwave field [J]. Journal of Central South University (Science and Technology), 2009, 40(01): 106
13 朱凤霞, 易健宏, 彭元东. 微波烧结金属纯铜压坯 [J]. 中南大学学报(自然科学版), 2009, 40(01): 106
14 Luo J M, Wu X H, Xu J L. Effect of TiC Additive amount s on the Microstructure and Properties of TiC/TC4 Composites Prepared by Microwave Sintering [J]. Rare Metal Materials and Engineering, 2017, 46(11): 3416
14 罗军明, 吴小红, 徐吉林. TiC添加量对微波烧结TiC/TC4复合材料组织和性能的影响 [J]. 稀有金属材料与工程, 2017, 46(11): 3416
15 Sui Y W, Li B H, Liu A H, et al. Mechanical Properties of Centrifugal Casting Titanium Alloys [J]. Rare Metal Materials and Engineering, 2009, 38(02): 251
15 隋艳伟, 李邦盛, 刘爱辉, 郭景杰, 傅恒志. 离心铸造钛合金件的力学性能变化规律. 稀有金属材料与工程, 2009, 38(02): 251
16 Orley M F, Thomas E, Rüdiger B. The influence of a small boron addition on the microstructure and mechanical properties of Ti-6Al-4V fabricated by metal injection moulding [J]. Advanced Engineering Materials, 2011, 13(5): 436
17 Mokdad F, Chen D, Liu Z, et al. Deformation and strengthening mechanisms of a carbon nanotube reinforced aluminum composite [J]. Carbon, 2016, 104: 64
18 Lin X J, Dong F Y, Zhang S X, et al. Effects of different (TiC+TiB) additive amount on microstructure and mechanical properties of TC4 alloy [J]. Hot Working Technology, 2019, 48(06): 133
18 林雪健, 董福宇, 张世鑫等. 不同添加量(TiC+TiB)对TC4合金组织和力学性能的影响 [J]. 热加工工艺, 2019, 48(06): 133
19 Braem A, Mattheys T, Neirinck B, et al. Porous titanium coatings through electrophoretic deposition of TiH2 suspensions [J]. Advanced Engineering Materials, 2011, 13: 509
20 Zhao Y, Taya M. Processing of porous NiTi by spark plasma sintering method [J]. Smart Structures and Materials, 2006, 6170: 617013
21 Faras I, Olmos L, Jimnez O, et al. Wear modes in open porosity titanium matrix composites with TiC addition processed by spark plasma sintering [J]. Transactions of Nonferrous Metals Society of China, 2019, 29(8): 1653
22 Tian J J, Li Z J, Zhang J G, et al. Research Progress of Tribological Properties of Carbon Nanotube Reinforced Metal Matrix Composite [J]. Hot Working Technology, 2017, 46(08): 23-26-31
22 田娟娟, 李再久, 张吉明等. 碳纳米管增强金属基复合材料摩擦学性能的研究进展 [J]. 热加工工艺, 2017, 46(08): 23-26-31
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.