Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (2): 128-134    DOI: 10.11901/1005.3093.2020.238
  研究论文 本期目录 | 过刊浏览 |
人工机械心瓣的损伤容限分析
张建辉(), 邢兴, 阮叶鹏, 孙振国
杭州电子科技大学机械工程学院 杭州 310018
Damage Tolerance Analysis of Artificial Mechanical Heart Valve
ZHANG Jianhui(), XING Xing, RUAN Yepeng, SUN Zhenguo
School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
引用本文:

张建辉, 邢兴, 阮叶鹏, 孙振国. 人工机械心瓣的损伤容限分析[J]. 材料研究学报, 2021, 35(2): 128-134.
Jianhui ZHANG, Xing XING, Yepeng RUAN, Zhenguo SUN. Damage Tolerance Analysis of Artificial Mechanical Heart Valve[J]. Chinese Journal of Materials Research, 2021, 35(2): 128-134.

全文: PDF(1471 KB)   HTML
摘要: 

基于断裂力学的损伤容限方法分析了国产全炭人工机械心瓣的保守寿命-在生理负荷作用下,热解炭瓣片失效前预存初始裂纹扩展到临界尺寸经历的加载循环次数。结果表明:人工机械心瓣瓣膜的最小初始裂纹尺寸只有几十微米,为了给瓣膜植入患者提供最大的安全保障,其基本要求是使用损伤容限设计方法进行热解炭人工心瓣的设计和质量控制。

关键词 复合材料热解炭人工心瓣损伤容限允许初始裂纹    
Abstract

The structural reliability of artificial mechanical heart valve made of pyrolytic carbon was assessed by means of damage tolerance methodology. In particular, a conservative estimation concerning the possible life-time, or the number of loading cycles was established, in that estimated duration, the pyrolytic carbon artificial heart valve can operate properly in service under given physiological loadings until a pre-existing flaw of minimum size grows gradually to the critical size. It is shown that a minimum pre-existing defect size computed is typically of the order of tens of microns for such pyrolytic carbon valve, for structural life of any pyrolytic carbon component in excess of patient lifetimes. The use of such analysis must be regarded as an essential requirement for the design and quality control of new and the existing pyrolytic carbon artificial heart valve in order to provide maximum assurance of patient safety.

Key wordscomposite    pyrolytic carbon for prosthetic heart valve    damage tolerance analyses    pre-existing defect size
收稿日期: 2020-06-17     
ZTFLH:  TB332  
基金资助:浙江省重大科技专项(2015C01035)
作者简介: 张建辉,男,1963年生,博士
图1  国产人工机械心瓣的示意图
MaterialsElastic modulus/GPaPoisson's ratioDensity/g·cm-3Coefficient of thermal expansion/m·k-1
Pure pyrolytic carbon300.212.25.5×10-6
Graphite120.151.86.5×10-6
表1  人工心瓣瓣片模型材料参数
图2  人工心瓣瓣片有限元网格划分
图3  瓣片的边界约束条件
图4  人工机械心瓣瓣片运行应力第一强度理论分布云图
图5  人工机械心瓣瓣片残余热应力的有限元模型网格划分
图6  人工心瓣瓣片的残余热应力分布
1 Zhang J H, Wang G M. Pyrocarbon for Artificial Mechanical Heart Valve [M]. Beijing: Science Press, 2016
1 张建辉, 王根明. 人工机械心脏瓣膜用热解炭 [M]. 北京: 科学出版社, 2016
2 Pucknat D, Liebich R. A damage tolerance analysis for complex structures [J]. Arch. Appl. Mech., 2016, 86: 669
3 Chen C Y. Fatigue and Fracture [M]. Wuhan: Huazhong University of Science & Technology Press, 2010
3 陈传尧. 疲劳与断裂 [M]. 武汉: 华中科技大学出版社, 2010
4 Zhao S B. Design methods and design data for damage tolerance [J]. J. Mach. Des., 2000, 17(5): 4
4 赵少汴. 损伤容限设计方法和设计数据 [J]. 机械设计, 2000, 17(5): 4
5 Ritchie R O. Fatigue and fracture of pyrolytic carbon: a damage-tolerant approach to structural integrity and life prediction in "ceramic" heart valve prostheses [J]. J. Heart Valve Dis., 1996, 5(suppl. 1): S9
6 Ryder J K, Cao H. Structural integrity assessment of heart valve prostheses: a damage tolerance analysis of the CarboMedics prosthetic heart valve [J]. J. Heart Valve Dis., 1996, 5(): S86
7 Ritchie R O, Dauskardt R H, Pennisi F J. On the fractography of overload, stress corrosion, and cyclic fatigue failures in pyrolytic-carbon materials used in prosthetic heart-valve devices [J]. J. Biomed. Mater. Res., 1992, 26: 69
8 Xu Z Y, Zhang B R, Wang G M, et al. Pure pyrolytic carbon double-leaf type heart valve prosthesis [P]. Chin Pat, CN 200820231115.1, 2009
8 徐志云, 张宝仁, 王根明等. 纯热解炭双叶型人工心脏瓣膜 [P]. 中国专利, CN200820231115.1, 2009
9 Cao H. Mechanical performance of pyrolytic carbon in prosthetic heart valve applications [J]. J. Heart Valve Dis., 1996, 5(): S32
10 Zhang J H, Li X P, Yang H, et al. Artificial heart valve pyrolytic carbon and testing method for fracture toughness of pyrolytic carbon composite material [P]. Chin Pat, ZL201310115477.X, 2015
10 张建辉, 李学鹏, 杨欢等. 人工心瓣热解炭及其复合材料断裂韧性测试方法 [P]. 中国专利, CN201310115477.X, 2015
11 Zhang J H, Ruan Y P, Sun Z G. Fracture toughness and fractography of pyrolytic carbon for artificial heart valve [J]. Chin. J. Biomed. Eng., 2020, 39: 129
11 张建辉, 阮叶鹏, 孙振国. 人工心瓣用热解炭断裂韧性研究及断口形貌分析 [J]. 中国生物医学工程学报, 2020, 39: 129
12 Cheng J, Zhao S S. Fracture Mechanics [M]. Beijing: Science Press, 2006
12 程靳, 赵树山. 断裂力学 [M]. 北京: 科学出版社, 2006
13 Wang R, Li H P, Zheng G M, et al. Review of domestic artificial heart valve [J]. Adv. Mater. Ind., 2011, (8): 13
13 王睿, 李海平, 郑光明等. 国产人工心脏瓣膜综述 [J]. 新材料产业, 2011, (8): 13
14 Ritchie R O, Dauskardt R H, Yu W K, et al. Cyclic fatigue-crack propagation, stress-corrosion, and fracture-toughness behavior in pyrolytic carbon-coated graphite for prosthetic heart valve applications [J]. J. Biomed. Mater. Res., 1990, 24: 189
15 Dauskardt R H, Ritchie R O, Takemoto J K, et al. Cyclic fatigue and fracture in pyrolytic carbon-coated graphite mechanical heart-valve prostheses: Role of small cracks in life prediction [J]. J. Biomed. Mater. Res., 1994, 28: 791
16 Kruzic J J, Kuskowski S J, Ritchie R O. Simple and accurate fracture toughness testing methods for pyrolytic carbon/graphite composites used in heart-valve prostheses [J]. J. Biomed. Mater. Res., 2005, 74A: 461
17 Gilpin C B, Haubold A D, Ely J L. Fatigue crack growth and fracture of pyrolytic carbon composites [A]. Proceedings of the 6th International Symposium on Ceramics in Medicine [C]. Oxford: Butterworths-Heinemann1993: 217
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.