Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (10): 785-794    DOI: 10.11901/1005.3093.2020.426
  研究论文 本期目录 | 过刊浏览 |
Mn对熔融Zn-Mn合金与X80钢润湿行为的影响
彭浩平1,2,3, 席世亨2, 崔德荣2, 刘亚1,3, 邓嵩2, 苏旭平1,3, 阮睿文2()
1.常州大学 江苏省材料表面科学与技术重点实验室 常州 213164
2.常州大学 江苏省油气储运技术重点实验室 常州 213164
3.常州大学 江苏省光伏科学与工程协同创新中心 常州 213164
Effect of Mn on Wetting Behavior of X80 Steel in Molten Zn-Mn Alloy
PENG Haoping1,2,3, XI Shiheng2, CUI Derong2, LIU Ya1,3, DENG Song2, SU Xuping1,3, RUAN Ruiwen2()
1.Jiangsu Key Laboratory of Material Surface Science and Technology, Changzhou University, Changzhou 213164, China
2.Jiangsu Key Laboratory of Oil & Gas Storage and Transportation Technology, Changzhou University, Changzhou 213164, China
3.Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, China
引用本文:

彭浩平, 席世亨, 崔德荣, 刘亚, 邓嵩, 苏旭平, 阮睿文. Mn对熔融Zn-Mn合金与X80钢润湿行为的影响[J]. 材料研究学报, 2021, 35(10): 785-794.
Haoping PENG, Shiheng XI, Derong CUI, Ya LIU, Song DENG, Xuping SU, Ruiwen RUAN. Effect of Mn on Wetting Behavior of X80 Steel in Molten Zn-Mn Alloy[J]. Chinese Journal of Materials Research, 2021, 35(10): 785-794.

全文: PDF(16980 KB)   HTML
摘要: 

研究了锌液中0.1%~0.5%(质量分数)Mn对X80钢表面润湿行为的影响。采用改良座滴法获得了450℃时Zn-Mn合金的接触角,通过SEM/EDS观察分析样品表面及界面的组织结构,研究了Zn-χMn(χ=0.1~0.5)合金与X80钢基板的润湿行为和界面反应。结果表明:锰元素对锌合金与钢基体间的润湿性反应起到正吸附作用。在450℃时,当熔体中的锰含量为0.1~0.5时,Zn-χMn合金与钢基间的润湿接触角从85°减小到62°。锌合金熔体/X80钢属于反应性润湿体系,生成的界面产物由FeZn10(δ)、FeZn13(ζ)和Fe3Zn10(Γ)/Fe5Zn21(Γ1)相组成,润湿行为受锌合金界面反应影响。在铺展三相线前沿存在前驱膜,前驱膜的出现能够促进润湿。

关键词 材料表面与界面润湿行为热浸镀锌接触角    
Abstract

The effect of the addition of Mn in the range of 0.1%~0.5% (mass fraction) in molten Zn-Mn alloys at 450℃on the surface wetting behavior of X80 steel was studied by means of contact angle measurement with an improved sessile drop method and microstructure observation with SEM-EDS in terms especially of the interaction at interface molten Zn-χMn(χ=0.1~0.5) alloys/X80 steel substrate. The results show that Mn can play a positive role in the wettability between the molten Zn alloy and the steel. At 450℃, with the increasing Mn content from 0.1 to 0.5, the wetting contact angle between the molten Zn-χMn alloy and the steel decreases from 85° to 62°. The molten Zn alloy/X80 steel belongs to the reactive wetting system, correspondingly, the interface reaction may result in interface products composed of FeZn10(δ), FeZn13(ζ) and Fe3Zn10(Γ)/Fe5Zn21(Γ1) phases. Therefore, the wetting behavior is affected by the interface reaction. There is a precursor film emerged at the front of the three-phase line, which can enhance the wettability of the molten Zn alloy to X80 steel.

Key wordssurface and interface in the materials    wetting behavior    hot dip galvanizing    contact angle
收稿日期: 2020-10-14     
ZTFLH:  TG178  
基金资助:国家自然科学基金(51671037);江苏省高等学校自然科学研究项目(19KJA530001);江苏省研究生科研与实践创新计划项目(KYCX20-2574);江苏高校“青蓝工程”
作者简介: 彭浩平,男,1982年生,博士
CSiMnPSCrNiMoNb
0.0540.301.840.0110.00410.330.100.0910.075
表1  X80钢基板化学成分(质量分数,%)
图1  450℃下Zn-Mn合金/X80钢接触角随Mn含量的变化
图2  Zn-xMn合金熔体与X80钢的润湿表面
Precursor filmFeMnZn
1#7.910.2191.88
2#6.340.3293.34
3#8.030.6591.32
4#9.230.7190.06
5#6.291.0892.63
表2  前驱膜化学成分
图3  不同Zn-xMn合金的前驱膜形貌
图4  Zn-xMn合金/X80钢界面微观结构
Mark pointFeMnZn
1#6.180.4193.41
2#5.320.8093.88
3#6.040.9593.01
4#9.230.2190.56
5#5.291.0693.65
6#7.230.4492.33
7#8.090.4591.46
8#5.581.0293.40
9#5.771.9992.24
10#8.400.2891.32
表3  图4中标识点处的化学成分
图5  Zn-0.5% Mn(质量分数)/X80钢界面微观结构
图6  润湿铺展各个阶段示意图
1 Zhang C G, Zheng L, Xie S Q, et al. Recent developments of large diameter X80 UOE line pipes [J]. Baosteel Techn. Res., 2014, 8: 46
2 Huo X D, Dong F, Li L J. Study on microstructure and properties of X80 pipeline steel [J]. Adv. Mater. Res., 2014, 941-944: 138
3 Shanmugam S, Ramisetti N K, Misra R D K, et al. Microstructure and high strength–toughness combination of a new 700 MPa Nb-microalloyed pipeline steel [J]. Mater. Sci. Eng., 2008, 478A: 26
4 Reip C P, Shanmugam S, Misra R D K. High strength microalloyed CMn(V-Nb-Ti) and CMn(V-Nb) pipeline steels processed through CSP thin-slab technology: Microstructure, precipitation and mechanical properties [J]. Mater. Sci. Eng., 2006, 424A: 307
5 Zhang Y, Xiao F R, Zhang J W, et al. In situ TEM study of the effect of M/A films at grain boundaries on crack propagation in an ultra-fine acicular ferrite pipeline steel [J]. Acta Mater., 2006, 54: 435
6 Cheng Y, Yu H Y, Wang Y, et al. Effect of strain rate on stress corrosion cracking of X80 pipeline steel [J]. Mater. Eng., 2013, 41(3): 77
6 程 远, 俞宏英, 王 莹等. 应变速率对X80管线钢应力腐蚀的影响 [J]. 材料工程, 2013, 41(3): 77
7 Liu Z Y, Wang C P, Du C W, et al. Effect of applied potentials on stress corrosion cracking of x80 pipeline steel in simulated Yingtan soil solution [J]. Acta Metall. Sin., 2011, 47: 1434
7 刘智勇, 王长朋, 杜翠薇等. 外加电位对X80管线钢在鹰潭土壤模拟溶液中应力腐蚀行为的影响 [J]. 金属学报, 2011, 47: 1434
8 Zhu M, Liu Z Y, Du C W, et al. Effects of alternating current on corrosion behavior of X80 pipeline steel in acid soil environment [J]. J. Mater. Eng., 2015, 43(2): 85
8 朱 敏, 刘智勇, 杜翠薇等. 交流电对X80钢在酸性土壤环境中腐蚀行为的影响 [J]. 材料工程, 2015, 43(2): 85
9 Zhu L. Hot-Dip Galvanizing of Steel [M]. Beijing: Chemical Industry Press, 2006
9 朱 立. 钢材热镀锌 [M]. 北京: 化学工业出版社, 2006
10 Manna M, Naidu G, Rani N, et al. Characterisation of coating on rebar surface using Hot-dip Zn and Zn-4.9Al-0.1 misch metal bath [J]. Surf. Coat. Technol., 2008, 202: 1510
11 Marder A R. The metallurgy of zinc-coated steel [J]. Prog. Mater Sci., 2000, 45: 191
12 Rovere C A D, Silva R, Moretti C, et al. Corrosion failure analysis of galvanized steel pipes in a water irrigation system [J]. Eng. Fai. Anal., 2013, 33: 381
13 Wang J, Huang Q D, Liu J, et al. Accelerated indoor corrosion of galvanized steel in a simulated atmospheric environment of Guangzhou area [J]. Chin. J. Mater. Res., 2018, 32: 631
13 王 劲, 黄青丹, 刘 静等. 镀锌钢在模拟广州地区大气环境中的室内加速腐蚀研究 [J]. 材料研究学报, 2018, 32: 631
14 Zhang X G. Corrosion and Electrochemistry of Zinc [M]. New York: Plenum Press, 1996
15 Li X H, Li G X, Wu Y. Hot-dip Plating and Penetration Plating of Steel Parts [M]. Beijing: Chemical Industry Press, 2009
15 李新华, 李国喜, 吴 勇. 钢铁制件热浸镀与渗镀 [M]. 北京: 化学工业出版社, 2009
16 Shao D W, He Z R, Zhang Y H, et al. Research progress of hot-dip galvanizing technology [J]. Hot Work. Technol., 2012, 41(6): 108
16 邵大伟, 贺志荣, 张永宏等. 热浸镀锌技术的研究进展 [J]. 热加工工艺, 2012, 41(6): 108
17 Peng H P, Su X P, Wang J H, et al. Interface reaction mechanism for galvanizing in Zn-Al baths [J]. Chin. J. Nonferrous Met., 2012, 22: 3168
17 彭浩平, 苏旭平, 王建华等. 热浸镀锌铝的界面反应机理 [J]. 中国有色金属学报, 2012, 22: 3168
18 Kong G, Lu J T, Chen J H, et al. Review on progress of technigalva [J]. Corros. Sci. Prot. Technol., 2001, 13: 223
18 孔 纲, 卢锦堂, 陈锦虹等. 热浸Zn-Ni合金镀层技术的研究与应用 [J]. 腐蚀科学与防护技术, 2001, 13: 223
19 Xu Q L, Zhu Z X, Yin F C. The influence of Ni and Sb in hot-dip galvanizing bath on the structure of alloy coating [J]. Mater. Prot., 2015, 48(12): 20
19 徐其林, 朱中喜, 尹付成. 热浸镀锌浴中的Ni, Sb对合金镀层组织的影响 [J]. 材料保护, 2015, 48(12): 20
20 Cui D R, Lei Y, Li Z W, et al. Effect of Sb on surface wettability of zinc liquid and X80 steel [J]. Surf. Technol., 2020, 49: 269
20 崔德荣, 雷 云, 李智伟等. Sb对锌液与X80钢表面润湿性影响的研究 [J]. 表面技术, 2020, 49: 269
21 Pistofidis N, Vourlias G, Konidaris S, et al. The effect of bismuth on the structure of zinc hot-dip galvanized coatings [J]. Mater. Lett., 2007, 61: 994
22 Fratesi R, Ruffini N, Malavolta M, et al. Contemporary use of Ni and Bi in hot-dip galvanizing [J]. Surf. Coat. Technol., 2002, 157: 34
23 Kong G, Lu J T, Chen J H, et al. Effects of elements in zinc bath on batch hot dip galvanizing [J]. Surf. Technol., 2003, 32(4): 7
23 孔 纲, 卢锦堂, 陈锦虹等. 锌浴中元素对钢结构件热镀锌的影响 [J]. 表面技术, 2003, 32(4): 7
24 Shen P, Fuji H, Matsumoto T, et al. The influence of surface structure on wetting of α-Al2O3 by aluminum in a reduced atmosphere [J]. Acta Mater., 2003, 51: 4897
25 Reumont G, Foct J, Perrot P, New possibilities for the galvanizing process: the addition of manganese and titanium to the zinc bath [A]. Proceedings of 19th International Galvanizing Conference [C]. Berlin: 2000: 1
26 Yue Q C, Cui J Z. The effect of Mn on coloring hot dip galvanization [J]. Mater. Rev., 1999, 13(3): 63
26 乐启炽, 崔建忠. Mn在彩色热镀锌中的作用 [J]. 材料导报, 1999, 13(3): 63
27 Wu Z S, Wang J H, Su X P. Effect of Mn on microstructure and growth kinetics of hot-dip galvanized Zn-0.2%AL alloy coating [J]. Hot Work. Technol., 2010, 39(22): 123
27 吴自施, 王建华, 苏旭平等. 锰对热浸Zn-0.2%Al合金镀层组织和生长动力学影响的研究 [J]. 热加工工艺, 2010, 39(22): 123
28 Xie K. Effects of Bi, Ti, Mn on microstructure and properties of Hot-dip galvanized coatings [D]. Hanzhong: Shaanxi Institute of Technology, 2015
28 解 凯. Bi、Ti、Mn对热浸镀锌镀层组织与性能的影响 [D]. 汉中: 陕西理工学院, 2015
29 Chen J H, Lu J T, Xu Q Y, et al. Study in coloured alloy coatings of hot dipped Zn-Ti-Ni and Zn-Mn-Cu [J]. J. South China Univ. Technol. (Nat. Sci.), 1997, 25(7): 60
29 陈锦虹, 卢锦堂, 许乔瑜等. 彩色热镀Zn-Ti-Ni和Zn-Mn-Cu合金镀层的研究 [J]. 华南理工大学学报(自然科学版), 1997, 25(7): 60
30 Meng Q H. Effect of Al and Ni on the wetting of several substrates by Zr-Cu based alloys [D]. Changchun: Jilin University, 2013
30 孟庆贺. Al, Ni对Zr-Cu合金在几种基板表面润湿性的影响 [D]. 长春: 吉林大学, 2013
31 Butt H J, Golovko D S, Bonaccurso E. On the derivation of Young's equation for sessile drops: nonequilibrium effects due to evaporation [J]. J. Phys. Chem., 2007, 111B: 5277
32 Young T. An essay on the cohesion of fluids [J]. Proc. R. Soc. London, 1805, 95: 65
[1] 陆益敏, 马丽芳, 王海, 奚琳, 徐曼曼, 杨春来. 脉冲激光沉积技术生长铜材碳基保护膜[J]. 材料研究学报, 2023, 37(9): 706-712.
[2] 王乾, 蒲磊, 贾彩霞, 李志歆, 李俊. 碳纤维/环氧复合材料界面改性的不均匀性[J]. 材料研究学报, 2023, 37(9): 668-674.
[3] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[4] 李瀚楼, 焦晓光, 朱欢欢, 赵晓欢, 矫庆泽, 冯彩虹, 赵芸. 支链含氟聚酯的合成和性能[J]. 材料研究学报, 2023, 37(4): 315-320.
[5] 闫春良, 郭鹏, 周靖远, 汪爱英. Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为[J]. 材料研究学报, 2023, 37(10): 747-758.
[6] 陈开旺, 张鹏林, 李树旺, 牛显明, 胡春莲. 莫来石粉末化学镀镍和涂层的高温摩擦学性能[J]. 材料研究学报, 2023, 37(1): 39-46.
[7] 单位摇, 王永利, 李静, 熊良银, 杜晓明, 刘实. 锆合金表面Cr基涂层的耐高温氧化性能[J]. 材料研究学报, 2022, 36(9): 699-705.
[8] 程红杰, 刘黄娟, 姜婷, 王法军, 李文. 近红外反射超疏水黄色涂层的制备和性能[J]. 材料研究学报, 2022, 36(9): 687-698.
[9] 张红亮, 赵国庆, 欧军飞, Amirfazli Alidad. 基于聚多巴胺的超疏水棉织物的一锅法制备及其油水分离性能[J]. 材料研究学报, 2022, 36(2): 114-122.
[10] 崔丽, 孙丽丽, 郭鹏, 马鑫, 王舒远, 汪爱英. 沉积时间对聚醚醚酮表面类金刚石薄膜的结构和性能的影响[J]. 材料研究学报, 2022, 36(11): 801-810.
[11] 李建中, 朱博轩, 王振宇, 赵静, 范连慧, 杨柯. 输尿管支架表面化学接枝镀铜涂层及其性能[J]. 材料研究学报, 2022, 36(10): 721-729.
[12] 李蕊, 王浩, 张天刚, 牛伟. Ti811合金表面激光熔覆Ti2Ni+TiC+Al2O3+CrxSy复合涂层的组织和性能[J]. 材料研究学报, 2022, 36(1): 62-72.
[13] 李修贤, 邱万奇, 焦东玲, 钟喜春, 刘仲武. α籽晶促进低温反应溅射沉积α-Al2O3薄膜[J]. 材料研究学报, 2022, 36(1): 8-12.
[14] 范金辉, 李鹏飞, 梁晓军, 梁建平, 徐长征, 蒋力, 叶祥熙, 李志军. 镍-不锈钢复合板轧制过程中界面的结合机制[J]. 材料研究学报, 2021, 35(7): 493-500.
[15] 卢壹梁, 杜瑶, 王成, 辛丽, 朱圣龙, 王福会. 纳米Al2O3TiO2改性有机硅涂层对304不锈钢高温氧化行为的影响[J]. 材料研究学报, 2021, 35(6): 458-466.